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1 Review of Group Theory

Definition 1.1 (Fields). A field is a set equipped with two binary operations, one called
addition and the other called multiplication, denoted in the usual manner, which are both
commutative and associative, both have identity elements (the additive identity denotes 0
and the multiplicative identity denoted 1), addition has inverse elements (the inverse of x is
denoted −x), multiplication has inverses of nonzero elements (the inverse of x denoted 1

x
or

x−1), multiplication distributes over addition, and 0 ̸= 1.

Z is not a field, but R is a field!

Definition 1.2 (Rings). A ring is a set equipped with two binary operations, one called
addition, and the other called multiplication, denoted in the usual manner, which are both
associative, addition is commutative, both have identity elements (the additive identity de-
notes 0 and the multiplicative identity denoted 1), addition has inverse elements (the inverse
of x is denoted −x), and multiplication distributes over addition. If multiplication is also
commutative, then the ring is called a commutative ring.

Z is a ring, but N is not. Integers modulo n are also rings.

Definition 1.3 (Groups). A group is a set equipped with one binary operation that is
associative, has an identity element, and has inverse elements. If, furthermore, multiplication
is also commutative, then the group is called a commutative group or an Abelian group.
Abelian groups can be denoted either additively or multiplicatively, but non Abelian groups
are usually denoted multiplicatively.

The set Z of all objects under the action of all group elements is referred to the orbit of
z ∈ Z under the action of the group G.
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2 Review of Differential Geometry

Definition 2.1 (Injective Map (one-to-one)). A map f : X 7→ Y is injective if every element
in the co-domain maps to at most one element in the domain. In symbols: ∀x1, x2 ∈ X :
f(x1) = f(x2) =⇒ x1 = x2.

Definition 2.2 (Surjective Map (onto)). A map f : X 7→ Y is surjective if every element in
the co-domain maps to at least one element in the domain. In symbols: ∀y ∈ Y : ∃x ∈ X :
f(x) = y.

Definition 2.3 (Isometry). Let (X, d1) and (Y, d2) be metric spaces. Then (X, d1) is said
to be isometric to (Y, d2) if there exists a surjective mapping f : X 7→ Y such that ∀x1, x2 ∈
X : d1(x1, x2) = d2(f(x1), f(x2)). This mapping f is said to be an isometry.

Definition 2.4 (Topology). Let X be a non-empty set. A set T of of subsets of X is said
to be a topology on X if,

(i) X ∈ T ∧ ∅ ∈ T

(ii) The union of any number of sets (finite or infinite) in T belongs to T

(iii) The intersection of any two sets in T belongs to T .

Let’s have X = {a, b, c, d, e, f}, then T1 = {X, ∅, {a}, {c, d}, {a, c, d}, {b, c, d, e, f}} is a
topology on X, but T1 = {X, ∅, {a}, {c, d}, {a, c, d}, {b, c, d, e}} is not a valid topology.

All sets in a topology are open.

Metric spaces are an important class of topological spaces.

The topology on the metric space M = (A, d) induced by (the metric) d is defined as the
topology T generated by the basis consisting of the set of all open ϵ-balls in M .

Definition 2.5 (Neighborhood). Let (X, T ) be a topological space, N a subset of X and p
a point in N . Then N is said to be a neighborhood of the point p if there exists an open set
U such that p ∈ U ⊆ N .

Definition 2.6 (Homeomorphism). Let (X, T1) and (Y, T2) be topological spaces. Then they
are said to be homeomorphic if there exists a function f : X 7→ Y which has the following
properties.

(i) f is bijective

(ii) ∀U ∈ T2 : f
−1(U) ∈ T1
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(iii) ∀V ∈ T1 : f(V ) ∈ T2

We say that the map f is a homeomorphism between (X, T1) and (Y, T2).

Definition 2.7 (Hausdorff Space). A topological space (X, T ) is said to be a Hausdorff space
if for each pair of distinct points a, b ∈ X, there exists open sets U, V such that a ∈ U, b ∈ V
and U ∩ V = ∅.

The topology can differentiate between points and sequences converge to unique points.

For any metric space (X, d) and topology T induced on X by d, the topological space
(X, T ) is a Hausdorff Space.

An example of a non-Hausdorff Space is a pseudo metric space, where the distance
between two distinct points, A and B, can be zero. Thus any open ϵ-ball containing A also
contains B, and any sequence converging to A also converges to B. So this fails the Hausdorff
condition.

Definition 2.8 (Locally Euclidean). A topological space (X, T ) is said to be locally eu-
clidean if there exists a positive integer n such that each point x ∈ X has an open neighbor-
hood homeomorphic to an open ball around 0 in Rn.

Definition 2.9 (Topological Manifold). A Hausdorff locally euclidean space is said to be a
topological manifold.

Definition 2.10 (Chart). A chart ϕ for a topological space M is a homeomorphism from
an open subset W of M to an open subset U of Rn

Definition 2.11 (Atlas). An atlas is a set of charts such that the union of all their domains
covers M

The four charts above each map a part Wα of the circle M to an open interval Uα, and
the four charts form an atlas of the circle.
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Definition 2.12 (Tangent Space). A tangent space to a manifold M of dimension n at point
p is the n-dimensional real vector space containing all possible directions in which one can
tangentially pass through point p. It is denoted Tp(M). In physics, the tangent space to a
manifold at a point is equivalent to the space of possible velocities for a particle moving on
the manifold. It is made up of all velocity vectors γ(t) where γ : R 7→ M is a path such
that γ(t) = p.

For example, circle M is a 1-dimensional manifold in R2, and the tangent space at any
point p is the set of all vectors on the tangent line at point p.

Definition 2.13 (Differentiable Manifold). A differentiable manifold of dimension n is a set
M together with a family of injective maps xα : Uα 7→ M of open sets Uα ⊆ Rn into M such
that,

(i)
⋃

α xα(Uα) = M

(ii) ∀α, β where xα(Uα) ∩ xβ(Uβ) = W ̸= ∅, we have that x−1
α (W ), x−1

β (W ) are open sets

in Rn, and x−1
α ◦ xβ, x−1

β ◦ xα are continuous and differentiable everywhere. Notice

that x−1
α ◦ xβ and x−1

β ◦ xα are Uβ 7→ Uα and Uα 7→ Uβ respectively.

(iii) The family {Uα,xα} is maximal relative to conditions 1 and 2. In other words, {Uα,xα}
is not properly contained in any other family satisfying (i) and (ii).

Definition 2.14 (Differentiable Map). Let M and N be differentiable manifolds. A differ-
entiable map is any f : M 7→ N that is continuous and differentiable everywhere.

From above, x−1
α ◦ xβ and x−1

β ◦ xα are differentiable maps x−1
β (W ) 7→ x−1

α (W ) and

x−1
α (W ) 7→ x−1

β (W ) respectively.

Definition 2.15 (Diffeomorphism). Let M and N be differentiable manifolds. A differ-
entiable map f : M 7→ N is a diffeomorphism if it is a bijection and its inverse is also a
differential map.

Whereas a homeomorphism is a bijection that is continuous with a continuous inverse, a
diffeomorphism is additionally differentiable and has a differentiable inverse.

From above, x−1
α ◦ xβ and x−1

β ◦ xα are diffeomorphisms .

Definition 2.16 (Cotangent Space). The cotangent space to a differentiable manifold M
of dimension n at point p is the n-dimensional real vector space containing all gradients of
differentiable functions at x, and for finite dimensional manifolds is the dual space to the
tangent space.
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Definition 2.17 (Riemannian Manifold). A Riemannian manifold is an n-dimensional dif-
ferentiable manifold M together with a choice, for each p ∈ M , of an inner product ⟨ , ⟩
in Tp(M) that varies differentiably with p in the following sense. For some (hence, all)
parameterization xα : Uα 7→ M with p ∈ xα(Uα), the functions

gij(u1, . . . , un) = ⟨ ∂

∂ui

,
∂

∂uj

⟩, i, j = 1, . . . , n

are differentiable at x−1
α (p); here (u1, . . . , un) are the coordinates of Uα ⊆ Rn.

Therefore we define distances locally in our manifold. If we choose a basis for the tangent
space Tp(M), then in that basis we can represent our metric as a positive definite matrix
Gp ∈ Sn

+ and ⟨v,w⟩p = v⊤Gpw. The l2 metric, for example, is the special case Gp = I.
For cotangent vectors, the metric is ⟨v,w⟩∗p = v⊤G−1

p w. This metric can change across the
manifold though! The geodesic distance between any two points is the minimum length of
any path between them. The geodesic is the locally shortest path that is parameterized by
arc length (this isn’t necessarily the shortest path). Geodesic distance is global distance, and
the metric is local distance. You need to have a Riemannian Manifold to define distances
because you need the metric.

Quantities on the manifold must be defined in a way that they transform consistently
between different embeddings, since there are many different ways that a manifold can be
embedded in a vector space (for instance, the manifold of natural images can be embedded
in the vector space of pixel representations of an image). Let p ∈ Rn be an embedding of the
point p. Under a differentiable change in embedding p̄ = f(p), tangent vector components
v transform as v̄ = Jfv where Jf is the Jacobian of f at p. Cotangent vector components w
transform as w̄ = J−1

f w. A linear transform of vectors in Tp(M) represented by the matrix

A transforms as Ā = JfAJ−1
f . The metric matrix Gp ∈ Sn

+ transforms as Gp̄ = J−T
f GpJ−1

f .

Definition 2.18 (Laplacian Operator). The Laplacian △f of a function f measures the
divergence of a the function’s gradient: △f = ∇2f , where ∇ = ( ∂

∂x1
, ..., ∂

∂xn
). It can be

expressed explicitly as the sum of the pure second partial derivatives with respect to each
vector of an orthonormal basis for Rn: △f =

∑
i
∂2f
∂x2

i

Definition 2.19 (Laplace-Beltrami Operator). The Laplace–Beltrami operator is a gener-
alization of the Laplace operator to functions defined on Riemannian manifolds. Once the
metric Gp is known in a given coordinate system, the Laplace-Beltrami Operator can be

constructed in terms of the coordinates: △[f ](x) = 1√
det(Gp)

∑
j

∂
∂xi

(
√

det(Gp)
∑

i

g−1
ij

∂f
∂xi

).

In flat Euclidean space, Gp = I, which reduces this to the familiar
∑

i
∂2f
∂x2

i
.

Definition 2.20 (Tangent Bundle). Let S be some abstract surface, then we can define
T (S) = {(p, w)|p ∈ S, w ∈ Tp(S)} to be the tangent bundle of S.
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Definition 2.21 (Parametrized Curve). A parametrized curve α : [0, l] 7→ S is the restriction
to [0, l] of a differentiable mapping of (0− ϵ, l + ϵ), α > 0, into S. If α(0) = p and α(l) = q,
we say that α joins p to q. α is regular if α′(t) ̸= 0 for t ∈ [0, l].

I = [0, l] whenever specification of the endpoint l is unnecessary.

Definition 2.22 (Geodesic). A nonconstant, parametric curve γ : I 7→ S is geodesic at t ∈ I
if the field of its tangent vectors γ′(t) is parallel along γ at t. γ is a parametrized geodesic
(also just called a geodesic) if it is geodesic for all t ∈ I.

The geodesic between x and y is the shortest path parameterized by arc length. It isn’t
necessarily a minimum path from start to end. For example, the great circle from the north
pole to itself is a geodesic, even though the distance of the shortest path is zero.

Definition 2.23 (Geodesic Distance). For any two points on a manifold, x, y ∈ M , the
geodesic distance between them is defined as the minimum length of any path between
them:

D(x, y) = min
γ

γ(0)=x
γ(1)=y

∫ 1

0

dt
√

⟨γ̇(t), γ̇(t)⟩γ(t)

Whereas the metric is a local notion of distance, defined only in the tangent space, the
geodesic distance is a global distance between two points on a manifold.

In machine learning, ”metric learning”, despite the name, typically refers to learning
a single, global notion of distance (the geodesic), or to learning a mapping that preserves
distances, under the assumption that the correct local distance (the metric) is already known.

Definition 2.24 (Geodesically Complete). Also called a complete manifold, a Riemannian
manifold M is geodesically complete if every geodesic γ : I 7→ M is maximal, such that
I = (−∞,∞).

Informally, a Riemannian manifold is geodesically complete if at any point p you can
follow a ”straight” line indefinately along any direction.

Definition 2.25 (Simply Connected). A manifold is simply connected if any closed loop
can be continuously deformed into a single point.

Definition 2.26 (Vector Field). A vector field w along a paremeterized curve α : I 7→ S is
a correspondence that assigns each t ∈ I a vector w(t) ∈ Tα(t)(S)

Definition 2.27 (Parallel Vector Field). A vector field w along a parameterized curve α :
I 7→ S is said to be parallel if Dw

dt
= 0 for every t ∈ I.
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Proposition 2.1 (Constants among parallel vector fields). If w and v are parallel vector fields
along α : I 7→ S, then the following are all constant: ⟨w(t), v(t)⟩, |w(t)|, |v(t)|, and the angle
between w(t) and v(t).

Proposition 2.2 (Uniqueness of parallel vector fields). Let α : I 7→ S be a parameterized
curve in S and let w0 ∈ Tα(t0)(S), t0 ∈ I. Then there exists a unique parallel vector field
w(t) along α(t) with w(t0) = w0.

How do we relate a vector in one tangent space to a vector in another tangent space? In
general, there is no unique mapping from vectors in one tangent space to another. A vector in
a tangent space Tx(M) can be identified with a vector in Ty(M) in a path-dependent manner
using parallel transport! In parallel transport, a vector is moved infinitesimally along a path
such that it is always locally parallel with itself as it moves.

Definition 2.28 (Parallel Transport). Let α : I 7→ S be a parameterized curve and w0 ∈
Tα(t0)(S), t0 ∈ I. Let w be the parallel vector field along α, with w(t0) = w0. The vector
w(t1), t1 ∈ I is called the parallel transport of w0 along α at the point t1.

Definition 2.29 (Affine Connection). The affine connection at p is a map Γp : Tp(M) ×
Tp(M) 7→ Tp(M). For vectors v,w ∈ Tp(M),Γp(v,w) can be thought of as the amount that
v changes when moving to a nearby tangent space in the direction w.

For a Riemannian manifold, the affine connection should preserve the metric (meaning
that the inner product between vectors does not change as they are parallel transported),
and it should be torsion free (meaning the vectors should not ”twist” as they are parallel
transported. The Levi-Civita connection is the unique affine connection that preserves these
properties for a Riemannian manifold.

Definition 2.30 (Levi-Civita Connection). This is an affine connection that preserves the
metric (meaning inner products don’t change) and is torsion-free (meaning vectors don’t twist
during transport). For a given choice of coordinates such that the metric can be represented
by Gp at p, and letting the ijth element of Gx be denoted gij, and the ith element of Γp(v,w)
be denoted as Γp(v,w)i, the Levi-Civita connection at p can be written as.

Γp(v,w)i =
∑
jk

Γi
jkvjwk

Γi
jk =

1

2

∑
l

g−1
il

(∂glk
∂pj

+
∂glj
∂pk

− ∂gjk
∂pl

)

This defines the covariant derivative, which is essentially the projection of the ordinary
derivative onto the manifold for a manifold embedded in Rn, but in general is thought of a
correction to force the covariant derivative to transform correctly as a rank-(0,1) tensor.
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Definition 2.31 (Holonomy Group). Let S be a regular surface and p ∈ S. For each
piecewise regular parameterized curve α : [0, l] 7→ S with α(0) = α(l) = p, let Pα : Tp(S) 7→
Tp(S) be the map which assigns to each v ∈ Tp(S) its parallel transport along α back to p.
By proposition 2.1, Pα is a linear isometry of Tp(S). If β : [l, l] is another piecewise regular
parameterized curve with β(l) = β(l) = p, define the curve β ◦ α : [0, l] → S by running
successively first α and then β; that is β ◦ α(s) = α(s) if s ∈ [0, l] and β ◦ α(s) = β(s) if
s ∈ [l, l].

In the paper, they describe a homology more simply as a linear transformation Hγ of the
loop γ : [0, 1] 7→ M where γ(0) = γ(1) = p. The columns of this matrix are specified by
an orthonormal basis {ei} ⊆ Tp(M) of the tangent space at x. Hγ characterizes how any
vector transforms when parallel transported around a loop. The space of all holonomies for
all loops that start and end at point p for a given Riemannian manifold is the holonomy
group, denoted as Holp(M).

Proposition 2.3 (Invariant Subspaces Under Holp(M) Group Action). If manifold M is a
product of submanifolds M1 × M2 × . . . × Mn, with the corresponding product metric as
its metric, then the tangent space Tp(M) can be decomposed into orthogonal subspaces

T
(1)
p (M), . . . , T

(n)
p (M) such that the action of Holp(M) leaves each subspace invariant. That

is, if v ∈ T
(i)
p (M), then Hγv ∈ T

(i)
p (M) for all γ. The converse also holds locally, and it holds

globally too if M is simply connected and geodesically complete.

The T
(i)
p (M) subspaces are each tangent to the respective submanifolds that make up M .

Definition 2.32 (Lie Group). Groups that are also smooth manifolds, such as rotations.

More formally, a real Lie group is a group that is also a finite-dimensional real smooth
manifold, in which the group operations of multiplication and inversion are smooth maps.
Smoothness of the group multiplication means that the following map µ is a smooth mapping
of the product manifold into the original manifold.

µ : M ×M 7→ M, µ(x, y) = xy

Definition 2.33 (de Rham Decomposition Theorem). Given M , a simply connected and
complete Riemannian manifold, there exists a unique decomposition up to isometry and
permutation of factors

M = Πn
i=1Mi

Where Mi are complete, simply connected Riemannian irreducible manifolds. Moreover
the holonomy representation of M over Tx(M) is the product of holonomy representations
of Mi over Txi

(Mi) where x = (x1, . . . , xn).
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