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Abstract

We explore the field of unsupervised disentanglement, which aims to disentangle
underlying factors of variations in representations in hopes that this creates more
useful representations in models. Disentanglement has many different interpreta-
tions, so we start by explaining a probabilistic and a symmetry-based definition of
disentanglement. We then give an overview of two influential methods in the field,
namely β-VAE and GeoManCEr. Additionally, we describe two quantitative disen-
tanglement metrics, SAP and MIG. We finish with some experiments analyzing
how the scale of models impacts disentanglement and discuss future directions in
the field.

1 Introduction to Unsupervised Disentanglement

Learning good representation of data is essential for success in machine learning. Bengio et al
hypothesized that one disentangling underlying factor of variation in representations is important
for good representations [1]. There are different factors of variation that cause certain changes in
the data, and oftentimes in the real world, only a few of them occur at a time. For instance, if we
have a picture of a cat, there are many factors of variation that could effect the way the image looks.
The lighting could change, the lens could change, the cat hair color could change, the cat positioning
could change, etc. We want our models to be able to disentangle that the entity that is the cat, from
the lighting conditions it is in, or the position that it is in.

Disentanglement of factors of variation is not the same as learning invariant features though. Learning
invariant features means creating representations that don’t necessarily preserve information that is
not directly required for the task. In the example with a picture of a cat, if we are learning an invariant
feature of the cat, our representation can discard all information about the lighting, the cat color, and
more. On the other hand, a disentangled representation, would aim to disentangle as many factors of
variation as possible while discarding as little information about the data as is practical.

The dream is that we can do this disentanglement in an unsupervised manner, meaning that the
underlying factors of variation or data labels are not given to us. This will likely require very
large amounts of data, which could be a reason why many current approaches to unsupervised
disentanglement don’t work very well.

Disentanglement isn’t an original idea to deep learning, algorithms such as independent component
analysis (ICA) [11] have been attempting to do similar things for multiple decades.

1.1 Definitions of Disentanglement

Unfortunately, notions of disentanglement are mostly not rigorously defined. It is hard to define
exactly what it means for a representation to be disentangled, it is hard to quantify how disentangled



a representation is, and there are disagreements about how factors of variation should be represented
(if they should for example be linearly separable, axis aligned, etc).

1.1.1 Probabilistic Disentanglement

Given some dataset of observations X = {x1, . . . ,xN}, we assume that there exists some number
of generative processes gi that produce the observations from a small set of corresponding Ki

independent generative factors ci. For each i we have g : cn 7→ xn, where p(cn) =
∏K

j=1 p(c
j
n).

A model has learned a disentangled representation if it learns to invert a generative process gi and
recover a latent representation z ∈ RL so that it best explains the observed data p(z,x) ≈ p(ci,x),
and factorizes the same way as the corresponding data generative factors ci [3].

1.1.2 Symmetry-Based Disentanglement

However, there is one paper that gives a more rigorous, symmetry-based definition of disentanglement
[5].

The idea is that there are many so called "symmetry transformations" in the world, that change certain
aspects of the world state, while keeping others invariant. At a high level, a representation is defined
as disentangled if it can be decomposed into a number of subspaces, each of which is compatible
with and can be transformed independently by a unique symmetry transformation.

Going back to our example of the picture of the cat, an example of a symmetry transformation would
be translating the cat across the image. This would change the location of the cat, but leave other
factors such as the identity of color of the cat invariant.

Definition 1.1 (Symmetry-Based Disentangled Representation). Let W be the set of world states, G
be a group1 that acts on those world states which factorizes as G = G1 × . . .×Gm and f : W 7→ Z
be a mapping to a latent representation space Z. The representation Z is said to be disentangled
with respect to the group factorization G = G1 × . . . Gm if:

(i) There exists an action of G on Z.

(ii) The map f : W 7→ Z is equivariant between the actions of G on W and Z, i.e. ∀g ∈ G :
∀w ∈ W : g · f(w) = f(g · w).

(iii) There is a fixed decomposition Z = Z1 × . . . × Zm such that each Zi is invariant to the
action of Gj for all j except j = i.

One can also define linearly symmetry based disentangled representations where the group actions
transform their corresponding disentangled subspace linearly. We won’t go into the details of this
here.

1.2 Challenging Current Progress in Unsupervised Disentanglement

Unfortunately, progress has been rather slow in unsupervised disentanglement and there are a few
core problems as well.

For one, it has been theoretically proven that the unsupervised learning of disentangled representations
is fundamentally impossible without inductive biases both on the considered learning approaches
and the data sets. The argument behind this is similar to arguments in causality and ICA literature,
which say that once we observe some data x, we can construct infinitely many generative models
with the same marginal distribution of x. It is now impossible to know which is the true causal
generative model for this given data. This doesn’t mean unsupervised disentanglement is hopeless
though, because in practice, if we choose the right inductive biases, we can perhaps find useful
disentanglements for downstream tasks.

Furthermore, experiments reveal that disentanglement performance seems to depend more on random
seeds and hyperparameters than it does on model choice and choice of objective function. These
results are kind of sad, but we were curious if scale is the answer here! Perhaps these experiments

1If you are not familiar with group theory (or any of the other math in this report), I advise you to look at our
project math notes, which give an overview of the relevant mathematical concepts.

2



Figure 1: Statistical efficiency of the FactorVAE Score for learning a GBT downstream task on
dSprites. Higher disentanglement scores don’t reliably lead to higher sample efficiency [10].

are just on such small datasets with such small models that we can’t make great sense with these
disentanglement metrics. Later in this report, we will run experiments evaluating how disentangled
common models are.

Additionally, it seems that models that have more disentanglement itself, don’t seem to reliably
decrease the sample complexity for learning downstream tasks. That being said, these empirical
results are only on a few datasets with a small sample of models, the authors even say they should be
treated with caution. Furthermore, disentanglement might have different benefits such as increased
interpretability and fairness.

2 β-VAE

β-VAE is one of the most popular disentanglement methods around today, so we will give a brief
explanation of it, as it will be used in our experiments [4].

2.1 Background on Autoencoders and Variational Autoencoders

We will only offer a brief explanation of these architectures, for more details please visit this
site (https://lilianweng.github.io/posts/2018-08-12-vae/). Autoencoders are neural networks that
essentially aim to learn an identity function in an unsupervised manner [6]. They try to reconstruct
an input by first compressing the input. We can denote our encoder gϕ : Rd 7→ Rb and our decoder
as fθ : Rb 7→ Rd, where our input data is x ∈ Rd and our bottleneck compressed representation
is z ∈ Rb. Our model tries to minimize some loss (such as mean squared error) between the input
image and the reconstruction as follows, minL(x,x′) where x′ = fθ(gϕ(x)).

Variational autoencoders are more rooted in variational bayesian methods and graphical models
[8]. Instead of mapping to some fixed latent vector z, we map to a latent distribution pθ. We can
now describe the relationship between the input x and our latent vector z by the prior pθ(z), the
likelihood pθ(x|z), and the posterior pθ(z|x). If we have the ideal parameters θ∗, we can generate
a x(i) by first sampling a z(i) from a prior distribution pθ∗(x), and then sampling x(i) from the
conditional distribution pθ∗(x|z = z(i)). The optimal θ∗ maximizes the probability of generating
real data samples as follows θ∗ = argmaxθ

∏n
i=1 pθ(x

(i)). Now we can try to calculate pθ(x
(i)) as

follows, pθ(x(i)) =
∫
pθ(x

(i)|z)pθ(z)dz, but this is very expensive. Instead, we will try to directly
approximate the posterior as pθ(z|x) ≈ qϕ(z|x). We can use the following graphical model to
represent the process.
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Figure 2: The graphical model involved in Variational Autoencoder. Solid lines denote the generative
distribution pθ(. ) and dashed lines denote the distribution qϕ(z|x) to approximate the intractable
posterior pθ(z|x) (Credits to Lilian Weng).

Figure 3: Illustration of variational autoencoder model with the multivariate Gaussian assumption
(Credits to Lilian Weng).

We can think of this as an autoencoder by viewing qϕ(z|x) as the probabilistic encoder and analog to
the encoder gϕ(x), and fθ(x|z) and the probabilistic decoder and analog to the decoder fθ(z).

For the loss, we will try to minimize the following loss.

LV AE(θ, ϕ) = − log pθ(x) +DKL(qϕ(z|x)∥pθ(z|x))
Through some algebra, we can reformulate this as follows.

= −Ez∼qϕ(z|x) log pθ(x|z) +DKL(qϕ(z|x)∥pθ(z))

Unfortunately, in the current state, we can’t actually backpropagate and train our model. This is
because we can’t sample z ∼ qϕ(z|x) during backpropagation, so we need to use the reparameteriza-
tion trick, which expresses the random variable z as a deterministic variable. It is common to model
qϕ(z|x) as a multivariate Gaussian with a diagonal covariance structure as follows.

z = µ+ σ ⊙ ϵ, where ϵ ∼ N(0, I)

2.2 Understanding β-VAE

β-VAE is just a slight variation on VAE. We first reformulate the objective in terms of a constrained
optimization problem as a constrained optimization problem.

max
ϕ,θ

Ex∼D[Ez∼qϕ(z|x) log pθ(x|z)]

subject to DKL(qϕ(z|x)∥pθ(z)) < δ

We can rewrite this as a Lagrangian using the Lagrangian multiplier β. Now, with the power of
algebra, we can rewrite the loss as follows.

Lβ−V AE(θ, ϕ) = −Ez∼qϕ(z|x) log pθ(x|z) + βDKL(qϕ(z|x)∥pθ(z))

4

https://lilianweng.github.io/posts/2018-08-12-vae/
https://lilianweng.github.io/posts/2018-08-12-vae/


Clearly, when β = 1, this is the same as the regular VAE loss. When β > 1, the model is more
incentivised to minimize the DKL(qϕ(z|x)∥pθ(z)) term. The authors hypothesized this helps to
learn disentangled representations of the conditionally independent data generative factors v. This is
because the constraints limit the capacity of the latent variable z, and therefore should encourage the
model to learn more efficient representations of the data. These efficient representations will hopefully
also be disentangled because the underlying conditionally independent data generative factors v
generate x and with a higher β term the objective function encourages conditional independence
of qϕ(z|x), so therefore this should also encourage a disentangled representation (but it might
also reduce reconstruction quality). β-VAE achieves disentanglement in terms of the probabilistic
interpretation of disentanglement.

2.3 Results

The authors ran both qualitative and quantitative experiments with β-VAE. For qualitative results, the
disentanglements learned by β-VAE look better than those learned by other generative models at the
time such as InfoGAN, DC-IGN, and VAE. In terms of quantitative results, they create their own
metric in the β-VAE paper, and β-VAE outperforms other models on that metric (as it turns out, this
metric is also correlated with other disentanglement metrics we describe later [10]).

3 GeoManCEr

GeoManCEr is a novel technique in disentanglement and was the main motivation for this project
[12]. This section will give a brief explanation, but we encourage everyone to read the full paper.
GeoManCEr is a nonparametric algorithm that specifically focuses on symmetry-based disentangle-
ment of data manifolds. The authors show that fully unsupervised factorization of a data manifold
is possible if the true metric of the manifold is known and every factor has a nontrivial holonomy.
GeoManCEr gives an approximation to the de Rham decomposition by estimating subspaces that are
invariant under random walk diffusion.

GeoManCEr builds off of failings of the parallelogram model of analogical reasoning [12]. More
specifically, it can complete the analogy a : b :: c : d where d is unknown, by calculating d = b+c−a.
It has been shown that word embeddings often work with this parallelogram model [12]. But
unfortunately, many natural transformations, such as rotations, do not follow this nice model. Instead,
these natural transformations can be represented as coming from the orbit of a group (a part of the
motivation behind the symmetry-based model of disentanglement). If we have some g, h ∈ G, where
G is a product of subgroups, both g and h leave all factors invariant except one, and each varies a
different factor, then they commute and the analogy can be uniquely completed.

GeoManCEr only looks at Lie groups, groups that are also manifolds, and uses the failures of the
parallelogram model as a learning signal. Directions on disentangled submanifolds comply with the
parallelogram model . The de Rham decomposition showcases these intuitions. GeoManCEr learns a
set of subspaces to assign to each point in the dataset, where each subspace is the tangent space of
one disentangled submanifold.

3.1 Theory

The holonomy group of a manifold can be denoted as Holx(M), which consists of the holonomies
Hγ (these can be written as linear transformations) for all loops on a given manifold M that start and
end at x. The holonomy group of a manifold is very informative about the global structure of the
manifold. By applying the the de Rham Decomposition Theorem, recursively, we can conclude that if
the holonomy group at a point leaves multiple pairwise orthogonal subspaces invariant, our manifold
M is the product of multiple Riemannian manifolds. That’s the key to GeoManCEr! The goal is to
discover a decomposition of a data manifold by investigating its holonomy group. Unfortunately,
the holonomy group can’t be computed directly because it is a property of all possible loops, so
GeoManCEr finds an approximation. Each Riemannian manifold in this decomposition of the data
manifold should correspond to the datapoints invariant to a certain symmetry transform (is this true?).

GeoManCEr considers the average properties of a random walk diffusion on a manifold. This can be
modeled as a diffusion equation which given a probability density p(x, 0), the probability of finding
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a particle at x at time t is given by the following differential equation.

∂p(x, t)

∂t
= τ∆0[p](x, t)

Where ∆0 is the Laplace-Beltrami operator and is defined as the trace of the second covariant
derivative (derivative on tangent vectors of a manifold) ∆0[f ] = Tr∇2f . This operator can be
generalized to the connection Laplacian fro rank-(p, q) tensor-valued functions. As it turns out,
properties of the holonomy group can be inferred from the second-order connection Laplacian,
denoted as ∆2. Namely, for a product manifold, the eigenfunctions of the second-order connection
Laplacian contain information about invariant subspaces of the holonomy group. If we have a
Riemannian product manifold M = M1 × . . . ×Mm and let T (1)

x (M), . . . , T
(m)
x (M) denote the

tangent spaces to each submanifold. Then the tensor fields
∏(i)

: M 7→ Tx(M)⊗Tx(M) for i ∈ [m]

where
∏(i)

x is the linear projection operator from Tx(M) 7→ T
(i)
x (M), go to 0 under the action of the

connection Laplacian. For the second-order Laplacian, the zero eigenvalues correspond to factors of
a product manifold, with the matrix-valued eigenfunction being the identity in the subspace tangent
to one manifold and zero everywhere else. There are also spurious eigenfunctions of ∆2 with zero
eigenvalue.

3.2 Algorithm

The goal of the Geometric Manifold Component Estimator (GeoManCEr) is to approximate the
second-order connection Laplacian from finite samples of points on the manifold, and then find the
eigenvectors with nearly zero eigenvalue that correspond to the disentangled submanifolds of the
data, that let us define local coordinates around every data point that are aligned with the disentangled
manifolds.

We start with some given set of points x1, . . . ,xt ∈ R⋉ sampled from some manifold embedded
in Rn. To construct our second-order connection Laplacian, we need to approximate properties of
the manifold. We will assume the data is embedded a Euclidean space where we use the Euclidean
metric on the manifold. We first construct a nearest neighbors graph, and then we construct a set of
tangent spaces per data point by applying PCA to the difference between xi and its neighbors in the
nearest neighbor graph xj .

Now that we have our manifold, we want to get our second-order connection Laplacian. We can do
this by generalizing the graph Laplacian to higher order tensors. With this, and connection matrices
of the manifold that we have what we need to construct the second order connection-Laplacian,
but we need to eliminate spurious eigenfunctions first. We can do this by a series of projections
onto the space of operators on symmetric zero-trace matrices. Now we can compute the smallest
R eigenvalues and R eigenvectors for each point and project back to full square matrices of the
dimensions of the manifold k, denoted Ωr

i .

Now that we have our eigenvalues and vectors, we need to align the results and output our orthogonal
subspaces T (1)

x (M), . . . , T
(m)
x (M) for every point tangent to the submanifolds M1 × . . .×Mm. We

can use the orthogonal FFDiag Algorithm to get a decomposition of our Ωr
i matrices that expresses an

orthonormal basis for each point. Now we can cluster these orthonormal bases to create one cluster
for each of the m disentangled subspaces.

3.3 Results

The authors tested GeoManCEr on synthetic manifolds and rendered 3D objects. On synthetic
datasets where manifolds consisted of 5 or fewer submanifolds, GeoManCEr was able to successfully
disentangle them, but on more complex manifolds, GeoManCEr failed.

On the 3D objects viewed at different orientations, when GeoManCEr was directly applied to the
true latent state vectors, GeoManCEr performed very well, and was able to keep the angle between
the true disentangled subspace and the GeoManCEr recovered subspaces small. However, when fed
the raw images, GeoManCEr performed no better than random chance. GeoManCEr also performs
poorly when applied to the latent vectors learned by β-VAE.
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Figure 4: The GeoManCEr Algorithm

Figure 5: Many disentanglement metrics are highly correlated. Higher is better for both SAP and
MIG

Unfortunately, GeoManCEr is also very expensive to run, since the number of nonzero elements in ∆2

increases with the dimensionality of the manifold by O(k4). Luckily there are only 3 hyperparameters
to tune, the dimension of the data manifold, the number of nearest neighbors, and the gap γ in the
spectrum of ∆2 at which to stop splitting tangent spaces that is used to infer the appropriate number
of submanifolds (equivalent to the number of underlying symmetry groups).

4 Disentanglement Metrics

Quantify how disentangled a representation is difficult, some papers [12] reject all current approaches,
and they are very correlated [10] (and see graphs). Despite the difficulties, it can be useful for getting
quantitative data that accelerated research. We describe two popular disentanglement metrics in the
literature.
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4.1 Mutual Information Gap (MIG)

MIG is a popular disentanglement metric because it is axis aligned, unbiased, and general to any
factorized latent distribution, whether categorical, multimodal vectors, or otherwise. We will start by
defining mutual information, which is simply,

In (zj ; vk) = Eq(zj ,vk)

log ∑
n∈Xvk

q (zj | n) p (n | vk)

+H (zj)

The MIG is defined as the gap between the largest two normalized mutual information scores between
two representations from the same class (ie two pictures of cats) [2].

1

K

K∑
k=1

1

H(vk)

(
In(zj(k) ; vk)− max

j ̸=j(k)
In(zj ; vk)

)
MIG is bounded between 0 and 1, and ideally we would like to maximize this value.

4.2 Separated Attribute Predictability score (SAP)

The Separated Attribute Predictability (SAP) score is the average difference of the prediction error of
the two most predictive latent dimensions for each factor [9].

We compute SAP by first constructing a score matrix S which is d × k. The ij’th entry is the R2

score j’th factor, using the i’th latent. For each column of S, we get the top two dimensions and find
the difference between them. Let’s call this value λj . The mean of each columns λj is the SAP score.

This metric is well aligned with qualitative disentanglement observations and easy to compute.

5 Experiments

We investigate how scale is related to disentanglement. Current disentanglement algorithms have
shown limited success with small models on carefully crafted datasets and we are curious how
these approaches will scale to SOTA models. Previous experiments have shown that more of the
variation in disentanglement performance can be accounted for by hyperparameter choice and random
initialization than the actual disentanglement objective [10]. It is important that our disentangling
methods scale to state of the art model sizes and datasets. This motivates the following questions.2

5.1 How much can disentanglement performance be accounted for by scale and not the
algorithm?

Scale is comprised of compute, dataset size, and parameters [7], and we varied the amount of compute.
β-VAE (with β = 4) shows MIG increase with scale. Results are still inconclusive, as we only tested
on the dSprites dataset with very limited scaling, yet it suggests that scale and algorithm choice
matter.

5.2 How does disentanglement scale on large models not explicitly trained to be disentangled?

We ran experiments using various self-supervised trained Contrastive Language-Image Pre-Training
(CLIP) vision encoders. CLIP Scale seems to increase disentanglement [13]. Vision transformers
(ViTs) also seem to have better disentanglement with scale than convolutional neural networks
(CNNs), yet results are still limited. These results are potentially in line with previous comparisons
between ViTs and CNNs, which indicate that ViTs might have better generalization abilities [14].
Given our hypothesis that disentangled representations might be useful representations that help
generalization, our results align.

2Our code can be found at https://github.com/berkott/disentanglementAndScale
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Figure 6: VAE Disentanglement

Figure 7: β-VAE Disentanglement with β = 4

6 Conclusions

Unsupervised disentanglement is a promising direction for machine learning that could yield insights
that improve the generalization ability and other capabilities of models. Currently, much of the work
is theoretical and with small model on toy datasets. We are excited to see these approaches scale and
we hope our experiments motivate others.
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Table 1: Disentanglement of CLIP Encoder on dSprites

Model Parameters MIG (higher better)
RN50 102 M 0.00441
RN50x4 178 M 0.01763
RN50x16 291 M 0.02616
ViT-B/16 150 M 0.02350
ViT-L/14 428 M 0.02550
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