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We study a teacher-student learning setup, where a “student” one layer neural network tries to
approximate a fixed “teacher” one layer neural network. We analyze the population gradient flow
dynamics in the previously unstudied setting with exactly and under-parameterization, even Her-
mite polynomial activation functions, and squared loss. In the toy model with 2 teacher neurons
and 2 student neurons, we fully characterize all critical points. We identify “tight-balance” critical
points which are frequently encountered in simulation and greatly slow down training. We prove
that with favorable initialization, we avoid tight-balance critical points and converge to the global
optimum. We extend tight-balance critical points and favorable initializations to the multi-neuron
exact and under-parameterized regimes. Additionally, we compare dynamics under the squared
loss to the simpler correlation loss and describe the loss landscape in the multi-neuron exact and
under-parameterized regimes. Finally, we discuss potential implications our work could have for
training neural networks with even activation functions.
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1 Introduction
We have two main motivations for pursing this work: (1) We are fascinated by neural network (NN)
dynamics. This fascination stems from an intrinsic curiosity about complex systems and similarities
to physical models such as the Ising model1. NNs are particularly well-suited for study since, unlike
many complex systems, we have full information about individual neurons and how they update.
(2) We are optimistic that mathematically analyzing gradient-based training dynamics of NNs in
key understudied regimes can make progress towards key NN research themes and ultimately make
NNs more controllable and efficient [Belkin (2023)]. Our work is most directly related to the
research themes of loss and activation function choices, optimization, distillation, and superposition
of features.

In this paragraph, I informally compare and contrast our research methodology to other sciences.
Please note this informal treatment does not do justice to the rich field of metascience. Natural
science research (and some deep learning theory) is typically theory driven. Researchers run exper-
iments to find phenomena existing theories cannot explain and use experimental results to develop
new theories. Machine learning research is typically methods driven. Researchers have hypotheses
about what could provably or empirically improve model performance, that they test by proving
theorems or testing on a validation dataset [Wolpert (1995); Haussler and Pitt (1989)]. Our research
is phenomena driven. We aim to understand the phenomena of a simple model and generalize the
phenomena as much as possible. We hope our results are useful for theory and methods driven
research in NNs.

We specifically focus on the under-parameterized teacher-student learning setup, where a “student”
one layer NN tries to approximate a fixed “teacher” one layer NN. This setting allows us to directly
study distillation and feature superposition. Additionally, it allows us to study learning any function
that can be parameterized with a neural network.

1Our loss and the Ising model Hamiltonian are similar in that they both have a repulsive and an attractive force.
Perhaps the biggest difference is the Ising model has binary valued spins while our weight vectors are real valued.
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1.1 Related works

Many works have studied gradient flow trajectories in the teacher-student setup. Saad and Solla
(1995) derive the gradient flow differential equations, yet rely on numerical integration to understand
dynamics. Du and Lee (2018) gives convergence rates in the over-parameterized regime with the
squared loss but only considers one student neuron. Martin et al. (2024) considers over exact
and under-parameterized regimes with the squared loss and multiple student and teacher neurons,
but Martin et al. (2024) only considers the quadratic activation function. Simsek et al. (2023,
2024) studies the under-parameterized setting with multiple student and teacher neurons, but they
relies on the correlation loss to decouple student neuron dynamics, potentially concealing important
phenomena.

The under-parameterized teacher-student setup is directly related to distillation. In fact, it is equiv-
alent to knowledge distillation in binary classification NNs [Hinton et al. (2015)]. Existing theories
of NN distillation require the linear representation hypotheses [Boix-Adsera (2024)]. Additionally,
prior works on the superposition of features study empirically study and interpret different under-
parameterized models [Elhage et al. (2022)].

1.2 Our model

We study the teacher-student setup and focus on the under-parameterized regime, since it is un-
derstudied and relevant to distillation, superposition, and large language model training. To be as
realistic as possible, we consider the squared loss and multiple teacher and student neurons. To
keep our analysis tractable, we consider the population spherical gradient flow dynamics with even
Hermite polynomial activation functions for both the teacher and student and orthonormal teacher
vectors. Even with these assumptions, it is difficult to get a precise understanding of the critical
points, let alone the dynamics. Thus, we began by studying a toy model with 2 teacher neurons and
2 student neurons. Then, we generalized the results to the exact and under-parameterized settings.

We now formally introduce our model. We consider the following (typically non-convex) optimiza-
tion problem

Ln,k({wi}ni=1) =
1

2
E

x∼D

[( n∑
i=1

Hρ(w
>
i x)−

k∑
j=1

Hρ(v
>
j x)

)2]
,

where D = N (0, Id), wi, vj ∈ Sd−1, and Hρ is the ρth normalized Hermite polynomial. We can
expand out the square and use the linearity of expectation to rewrite our objective as

=
1

2

n∑
i=1

n∑
l 6=i

gρ(w
>
i x,w

>
l x)−

n∑
i=1

k∑
j=1

gρ(w
>
i x, v

>
j x) +

1

2

k∑
j=1

k∑
j′=1

gρ(v
>
j x, v

>
j′x),

where gρ(a, b) = E[Hρ(a)Hρ(b)]. Since wi and vj are unit vectors, the correlation between w>
i x and

v>j x is w>
i vj . By Proposition 11.31 in O’Donnell (2021), gρ(w>

i x, v
>
j x) = (w>

i vj)
ρ. The first and

last terms are constants in terms of wi ∈ Sd−1, because of the spherical constraint and independence
of wi respectively. We can rewrite our objective as

=
1

2

n∑
i=1

n∑
q=1

(w>
i wq)

ρ −
n∑

i=1

k∑
j=1

(w>
i vj)

ρ + C =
n∑

i=1

n∑
i′>i

(w>
i wi′)

ρ −
n∑

i=1

k∑
j=1

(w>
i vj)

ρ + C.
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Setting

W =

 w>
1
...

w>
n

 ∈ Rn×d and V =

 v>1
...
v>k

 ∈ Rk×d

and denoting (·)◦ρ as the Hadamard power that raises each element of its input to the ρth power,
we can rewrite the objective as

=
1

2
1>
n (WW>)◦ρ 1n−1>

n (WV >)◦ρ 1k +C,

where 1n ∈ {1}n. We refer to the first term as the student repulsive term, as it encourages student
vectors to become orthogonal. We refer to the second term as the teacher attractive term, as it
encourages student vectors to align with teacher vectors. This model is identical, up to constant
factors, to that of Martin et al. (2024) when the activation function is the second normalized Hermite
polynomial. See appendix A for more details.

1.3 Contributions

In section 2, we conduct a full critical point analysis of the toy model with two student and two
teacher neurons. We also briefly describe the critical points in more general cases. In section
3, we discuss dynamics, and prove that we avoid “tight-balance” critical points from favorable
initializations. We generalize these initializations to the multi teacher and student neuron exact
and under-parameterized setting. In section 4, we connect our results to machine learning practice,
in particular to activation function choices.

Full proofs are in the appendix.

2 Critical point analysis

2.1 Derivative

We first compute the derivative of our objective with respect to wα,β,

∂Ln,k(W )

∂wα,β
= ρw>

:,β(Wwα)
◦ρ−1 − ρv>:,β(V wα)

◦ρ−1.

Therefore,

∂Ln,k(W )

∂W
= ρ(WW>)◦ρ−1W − ρ(WV >)◦ρ−1V.

We now consider the spherical derivative. Specifically, we restrict the rows of the derivative to be
on the sphere by projecting each row onto the tangent space Twα(S

d−1) of the sphere

∂Ln,k(W )

∂W
=


Pw1

(
∂Ln,k(W )

∂w1

)
...

Pwn

(
∂Ln,k(W )

∂wn

)


= ρ(WW>)◦ρ−1W − ρ(WV >)◦ρ−1V

−
([

ρ(WW>)◦ρ−1W − ρ(WV >)◦ρ−1V
]
W> ◦ In

)
W.
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Let A = ρ(WW>)◦ρ−1W − ρ(WV >)◦ρ−1V , then

∂Ln,k(W )

∂W
= A− (AW> ◦ In)W.

2.2 Finding general critical points

We set the derivative to 0. Thus, every W that satisfies the following equation is a critical point,

B − (BW> ◦ In)W = 0,

where B = A/ρ. We first identify general critical points, and then identify critical points in the toy
model.

2.2.1 Orthogonal copy critical points

Theorem 2.1 (Orthogonal copy critical points). Every arrangement of student vectors that satisfies
the following conditions is a critical point:

• for each i ∈ [n], wi = vj for some vj,

• for all i ∈ [n] and j ∈ [k], w>
i vj ∈ {−1, 0, 1}.

Proof Sketch. Consider the case where ρ is odd. Then the ith row of B is

Bi = wi

n∑
j=1

w>
j wi − wi

k∑
j=1

v>j wi.

Since ‖wi‖22 = 1, the ith row of the spherical gradient simplifies to 0. This completes the proof for
the odd case.

Consider the case where ρ is even. Then the ith row of B is

Bi = wi

n∑
j=1

|w>
j wi| − wi

k∑
j=1

|v>j wi|.

Since ‖wi‖22 = 1, the ith row of the spherical gradient simplifies to 0. This completes the proof for
the even case. This completes the entire proof.

2.2.2 Euclidean gradient can never be 0

We want to show that the Euclidean gradient can never be 0, i.e. B 6= 0.

Simple case ρ = 2. In the simple case Φ(W ) = W . A necessary condition for W>W = V >V , is

Tr(W>W ) = Tr(V >V ).

Observe

Tr(W>W ) = Tr(WW>) = ‖w1‖2 + . . .+ ‖wn‖2 = n,

and similarly Tr(V >V ) = k. Therefore it is not true that W>W = V >V .

Even ρ case.
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Lemma 2.2 (Euclidean gradient cannot be 0). If the teacher vectors are orthogonal, ρ is even,
ρ > 0, and n < k, there exist no configuration of student neurons such that B = 0.

Proof Sketch. We aim to show B 6= 0. Observe a sufficient condition is that there exists a i ∈ [n]
such that the squared `2 norm of the ith row of (WW>)◦ρ−1W is not equal to the squared `2 norm
of the ith row of (WV >)◦ρ−1V .

We compute the squared `2 norm of the ith row of (WV >)◦ρ−1V ,

‖((WV >)◦ρ−1V )i‖22 = ‖
k∑

j=1

(v>j wi)
ρ−1vj‖22 =

k∑
j=1

(v>j wi)
2ρ−2.

By lemma B.1, we know this quantity is at most 1, with equality only when wi = vj for some j ∈ [k].

We compute the squared `2 norm of the ith row of (WW>)◦ρ−1W ,

‖((WW>)◦ρ−1W )i‖22 = 2

n∑
j 6=i

(w>
j wi)

ρ + 2

n∑
j′>j
j′,j 6=i

(w>
j wi)

ρ−1(w>
j′wi)

ρ−1w>
j′wj + 1 +

n∑
j 6=i

(w>
j wi)

2ρ−2,

and show this quantity is at least 1, therefore showing that the norms can never be equal and
proving the original statement. This completes the proof.

2.2.3 Scaled rows critical points

Recall our critical point condition is

B − (BW> ◦ In)W = 0.

This is equivalent to the condition for all i ∈ [n], Bi = (B>
i wi)wi. Observe it suffices to say Bi is

some scalar multiple of wi since if there exists some constant βi ∈ R such that Bi = βiwi,

βiwi = (βiw
>
i wi)wi

βiwi = βiwi,

implying βi = B>
i wi.

Expanding out Bi, we have

Bi = W>(Wwi)
◦ρ−1 − V >(V wi)

◦ρ−1

= wi +
∑
j 6=i

(w>
i wj)

ρ−1wj −
k∑

j=1

(w>
i vj)

ρ−1vj .

Student in span of teachers. We first consider the case where wi ∈ span({v1, . . . , vk}). Since
the teacher vectors are unit norm and orthogonal, there exists some αi ∈ Sk−1 such that wi =
αi,1v1 + · · ·+ αi,kvk. We must now show that there exists some βi ∈ R such that

n∑
j 6=i

(α>
i αj)

ρ−1(αj,1v1 + · · ·+ αj,kvk)−
k∑

j=1

αρ−1
i,j vj = (βi − 1)(αi,1v1 + · · ·+ αi,kvk).
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Since the teacher vectors are orthogonal, an equivalent condition is for all i ∈ [n] and for all l ∈ [k],2

n∑
j 6=i

(α>
i αj)

ρ−1αj,l − αρ−1
i,l = (βi − 1)αi,l.

We can multiply each side of the expression above by αi,l for all l ∈ [k],

n∑
j 6=i

(α>
i αj)

ρ−1αi,lαj,l − αρ
i,l = (βi − 1)α2

i,l.

Summing these equations over all l ∈ [k] for a fixed i,

n∑
j 6=i

(α>
i αj)

ρ−1
k∑

l=1

αi,lαj,l −
k∑

l=1

αρ
i,l = (βi − 1)

k∑
l=1

α2
i,l

n∑
j 6=i

(α>
i αj)

ρ − ‖αi‖ρρ = βi − 1.

Solving for βi,

βi = 1 +

n∑
j 6=i

(α>
i αj)

ρ − ‖αi‖ρρ.

Substituting βi to our prior equation,
n∑

j 6=i

(α>
i αj)

ρ−1αj,l − αρ−1
i,l = (

n∑
j 6=i

(α>
i αj)

ρ − ‖αi‖ρρ)αi,l.

Writing the equalities in a vectorized form, we have an equivalent critical points condition that is
more interpretable,

n∑
j 6=i

(α>
i αj)

ρ−1αj − α◦ρ−1
i =

n∑
j 6=i

(α>
i αj)

ραi − ‖αi‖ρραi

n∑
j 6=i

(α>
i αj)

ρ−1
(
αj − (α>

i αj)αi

)
=

(
α◦ρ−1
i − ‖αi‖ρραi

)
n∑

j 6=i

(α>
i αj)

ρ−1
(
αj − (α>

i αj)αi

)
=

(
α◦ρ−1
i − (α◦ρ−1>

i αi)αi

)
.

Observe for any vectors u, v ∈ Rd, u− (u>v)v is the orthogonal projection of u onto the orthogonal
complement of v.

2.3 Toy model critical points

In general, it is still difficult to find critical points from the simplified form in the previous section.
Therefore we consider a simplified case where n = k = d = 2 and ρ > 2 and ρ is even. In this case,

2If the student vectors are orthogonal, the condition simplifies to −αρ−1
i,l = (βi − 1)αi,l, which clearly holds if

αi,l ∈ {−1, 0, 1}.
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Figure 1: Critical points condition functions when n = k = d = 2, ρ = 4. All critical points are
labeled with green dots.

Name Condition
Copy w1 = v1 and w2 = v2
Tight-balance w>

1 v1 = w>
2 v1 = cos−1(π/8) and w>

1 v2 = −w>
2 v2 = sin−1(π/8)

Balance w>
1 v1 = w>

2 v1 = 2−1/2 and w>
1 v1 = −w>

2 v1 = 2−1/2

Same copy w1 = w2 = v1
Same balance w1 = w2, w>

1 v1 = 2−1/2, and w>
1 v2 = 2−1/2

Table 1: Full description of the critical points found from figure 1 up to sign and teacher symmetries.

W is a critical point iff it satisfies

(α>
1 α2)

ρ−1
(
α2 − (α>

1 α2)α1

)
= α◦ρ−1

1 − (α◦ρ−1>
1 α1)α1

(α>
2 α1)

ρ−1
(
α1 − (α>

2 α1)α2

)
= α◦ρ−1

2 − (α◦ρ−1>
2 α2)α2,

where αi = (w>
i v1, w

>
i v2). We describe all ways this is possible,

Recall ‖αi‖2 = 1. Therefore, we can rewrite the conditions above in terms of α11 and α21 in
non-vectorized form. For simplicity we denote a = α11, b = α21, and c = ab+

√
(1− a2)(1− b2),

cρ−1
(
b− ca

)
− aρ−1 + (aρ +

√
1− a2

ρ
)a = 0

cρ−1
(√

1− b2 − c
√

1− a2
)
−

√
1− a2

ρ−1
+ (aρ +

√
1− a2

ρ
)
√
1− a2 = 0

cρ−1
(
a− cb

)
− bρ−1 + (bρ +

√
1− b2

ρ
)b = 0

cρ−1
(√

1− a2 − c
√

1− b2
)
−

√
1− b2

ρ−1
+ (bρ +

√
1− b2

ρ
)
√
1− b2 = 0.

Note it is difficult to find the zeros of these functions. Therefore, we plot these functions for ρ = 4
in figure 1 and by inspection find a full description of the critical points (all green dots in figure 1)
in table 1.

When we vary ρ, each critical point stays the same except the tight-balance critical point. Specifi-
cally, the angle of the student vectors to the closer teacher decreases as ρ increases. We show how
to find this angle θρ.
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Figure 2: Tight-balance critical point condition when n = k = d = 2. The red line corresponds to
ρ = 4 and the green line corresponds to ρ = 6.

Observe in the tight-balance critical point, a = −b and consequentially
√
1− a2 =

√
1− b2. In this

case, c = −a2 +
√
(1− a2)2 = 1− 2a2 and we can simplify our critical point conditions to

(1− 2a2)ρ−1
(
− a− (1− 2a2)a

)
− aρ−1 + (aρ +

√
1− a2

ρ
)a = 0

(1− 2a2)ρ−1
(√

1− a2 − (1− 2a2)
√
1− a2

)
−
√
1− a2

ρ−1
+ (aρ +

√
1− a2

ρ
)
√
1− a2 = 0.

We can further simplify to

(1− 2a2)ρ−1(−2a+ 2a3)− aρ−1 + aρ+1 − a
√
1− a2

ρ
= 0

2a2
√
1− a2(1− 2a2)ρ−1 −

√
1− a2

ρ−1
+ aρ

√
1− a2 −

√
1− a2

ρ+1
= 0.

Recall that at a tight-balance critical point, a 6= 0, therefore we can simplify the conditions to

−2(1− 2a2)ρ−1 − aρ−2 + 2a2(1− 2a2)ρ−1 + aρ −
√
1− a2

ρ
= 0

−
√

1− a2
ρ−2

+ 2a2(1− 2a2)ρ−1 + aρ −
√
1− a2

ρ
= 0

By subtracting the second equation from the first, we get a more general condition

−2(1− 2a2)ρ−1 − aρ−2 +
√
1− a2

ρ−2
= 0.

Unfortunately, this condition is also difficult to solve analytically. We visualize the function in figure
2. As ρ varies between different even values larger than 2, the condition maintains the 0 at 2−1/2,
but the other zeroes vary. We empirically solve for these zeros and plot them as a function of ρ in
figure 3. For ρ = 4, θρ = π/8, and plugging this back into the conditions above verifies that it is a
critical point. For larger ρ, we did not find a simple analytic form, yet empirically they satisfy the
conditions above.

2.4 Generalizing tight-balance critical points

We generalize tight-balance critical points to the exact and under-parameterized setting while keep-
ing all other assumptions. In the simplest case, a pair of student vectors is orthogonal to all other
student vectors and lies in the span of two teacher vectors. This decouples the dynamics of the
pair of student vectors from all other student vectors and reduces back to the toy model where
n = k = d = 2. Thus, the pair can form a tight-balance critical point. If the pair of student vectors
is not orthogonal to all other student vectors or the pair of student vectors does not lie in the span
of two teacher vectors, the dynamics will no longer decouple to the toy model where n = k = d = 2.
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Figure 3: Tight-balance critical point angle as a function of ρ.

2.5 Minima

We can write polynomial programs for finding the optimal configuration of neurons. However,
these programs are in general not convex and difficult to solve. Fortunately, identifying the global
minimum with orthogonal teacher vectors is simple.

Theorem 2.3 (Global minimum). When the teacher vectors are pair-wise orthogonal and the stu-
dent network is under or exactly parameterized and ρ is even, a student configuration where each
student vector copies a different teacher vector (up to sign symmetries) achieves the lowest loss.
When ρ = 2, any configuration where the students vector are orthogonal and lie in the span of the
teacher vectors is also a global minimum.

Proof. Recall the loss has two terms dependent on W , 1
2 1>

n (WW>)◦ρ 1n and −1>
n (WV >)◦ρ 1k.

Consider the first term. Observe (WW>)◦ρ always has ones on the main diagonal and non-negative
off diagonal entries. Therefore, this term is minimized when the off diagonals are all 0, which is
only the case when wis are pairwise orthogonal.

Consider the second term. Observe −1>
n (WV >)◦ρ 1k is minimized when

∑k
j=1(w

>
i vj)

ρ is maximized
for each i ∈ [n]. By lemma B.1, when ρ > 2 this is only the case if wi = vj or -vj . When ρ = 2, this
is the case if wi lies in the span of the teacher vectors.

Put together, this implies a configuration of student vectors is a global minimum iff it meets the
minimum condition for both the first and the second term. The stated configurations are the only
ones that achieve this. This completes the proof.

3 Dynamics
We study the training dynamics under the spherical population gradient flow,

dW (t)

dt
= −∇Sd−1

Ln,k(W ) = −∂Ln,k(W )

∂wα
.

We first describe the dynamics of the tight-balance critical points. Then we show that from favorable
“split-cone initialization”, we can avoid the tight-balance critical points and converge straight to
the global minima. Finally, we compare the dynamics with the squared loss to the correlation loss.
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3.1 Tight-balance critical point dynamics with 2 students and 2 teachers

We first consider n = k = 2. We simulate spherical gradient flow and analyze the dynamics
empirically. When both students are initialized close to the same teacher, they often first get stuck
at the tight-balance critical point, and eventually escape to the global minimum. See figure 4.
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Figure 4: Dynamics when n = k = d = 2 and ρ = 4.

Interestingly, the probability of encountering a tight-balance critical point from uniform random
initialization on the sphere increases with dimension d 5. Qualitatively, when converging to the
tight-balance critical points in higher dimensions, the student vectors first appear to go into the
span of the teachers, entering near one of the teachers. Then they split off into the tight-balance
configuration just like in the 2 dimensional case before.

2 4 6 8

0.2

0.3

0.4

0.5

Estimated from 100 trials

Teachers
Final Students
Initial Students

Time 0 to 20000

n = k = 2, d = 4

Figure 5: Left: probability of encountering tight-balance critical point where n = k = 2, ρ = 4, and
d varies. Right: Dynamics when n = k = 2, ρ = 4, and d = 4

When n ≤ k ≤ d, tight-balance critical points still frequently occur. However, only a few pairs of
student neurons find tight-balance critical points, and the rest converge directly to a teacher vector.
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Teachers
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Time 0 to 2000

Figure 6: Split cone initialization when n = k = d = 2.

3.2 Toy model split-cone initialization convergence

When student vectors are initialized closest to different teachers (up to sign symmetries), student
vectors avoid tight-balance critical points and quickly converge to the global minimum. The visu-
alization of this initialization, see figure 6, looks similar to light cones in special relativity. Hence,
we named this initialization split-cone initialization.

Lemma 3.1. Suppose n = k = d = 2, ρ is even, and ρ > 2. If student vectors are initialized closest
to different teacher vectors (up to sign symmetries), then the student vectors will converge to their
closest teacher vectors.

Proof Sketch. We first show if the student vectors are initialized closest to different teachers, they
will remain closest to their respective teacher throughout all of training. We show this by studying
the behavior of the spherical gradient flow when a student vector is nearly perfectly in between the
two teacher vectors.

The only critical point attainable following split teacher initialization is the copy global minimum.
Therefore gradient flow will converge to this critical point.

Unfortunately, this exact split-cone behavior is only exhibited when d = 2. The simplest counter
example can be constructed when n = 2 and k = d = 3, where regardless scaling on the student
repulsive term or the teacher attractive force, we are not guaranteed to stay in the cone we initialize
in. However, with the right scaling in our objective, we can describe an slightly more restricted
initialization from which we will converge to the globally optimal copy configuration.

Lemma 3.2. Suppose n ≤ k ≤ d < ∞, ρ is even, ρ > 2, and we have 1/n scaling on the student
repulsive term. If all student vectors are initialized such that w>

i vi > 2−1/2+ε for ε = (40(ρ−3.9))−1,
then the student vectors will converge to their closest teacher vectors.

Proof Sketch. Observe with the new scaling our loss is

Ln,k({wi}ni=1) =
1

2n
1>
n (WW>)◦ρ 1n−1>

n (WV >)◦ρ 1k +C,

We use the same proof technique as before. We first write out the spherical gradient on the ith

12



student vector as
∂Ln,k(W )

∂wi
= ρ

(∑
j 6=i

(w>
i wj)

ρ−1(wj − (w>
i wj)wi)− (w◦ρ−1

i − wi

k∑
j=1

wρ
i,j)

)
.

Suppose wi,i = 2−1/2 + ε, then our spherical gradient is

f(ε) = ((2−1/2 + ε)◦ρ−1 − (2−1/2 + ε)
k∑

j=1

wρ
i,j)−

∑
j 6=i

(w>
i wj)

ρ−1(wj,i − (w>
i wj)(2

−1/2 + ε))

= (2−1/2 + ε)◦ρ−1 − (2−1/2 + ε)ρ+1 − (2−1/2 + ε)
k∑

j 6=i

wρ
i,j

−
n∑

j 6=i

(w>
i wj)

ρ−1wj,i + (2−1/2 + ε)
n∑

j 6=i

(w>
i wj)

ρ.

The first three terms represent the “attractive” student to teacher force, and the last two terms
represent the “repulsive” student to student force. We bound all the terms and achieve the desired
result.

3.3 Squared versus correlation loss

Under the correlation loss, it has been shown by Simsek et al. (2023) that student vectors mono-
tonically approach the closest teacher vector. Under the squared loss, the student repulsive force
result in more complicated dynamics when student vectors are initialized close to the same teacher.
While student vectors first appear to monotonically approach the same teacher, they instead reach
the tight-balance critical point in 2 dimensions and eventually converge to different teachers. See
figure 7.
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Figure 7: Comparisons of square and correlation loss for n = k = 2, d = 3, and ρ = 4.

4 Broader connections

4.1 Activation function choices

Why don’t people use even activation functions? One hypothesis is that even activation functions
with small derivative near 0 might lead to regions of very small gradients around initialization or

13



when the magnitudes of weights are small or something.

We ran very simple experiments to test this hypothesis and found that even activation functions
with small derivatives near 0 tend to do poorly. Some of these activation functions such as quartic
activations were also unstable during training, perhaps also due to large derivatives far from the
origin. Even activation functions with larger derivatives near 0 such as the absolute value activation
function and quadratic activation performed more comparably to ReLU activation functions. See
figure 8.
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Figure 8: Performance of various even activation functions and ReLU on MNIST. Trained a 3 layer
neural network with 100 neurons per layer. Trained with Adam.

5 Discussion and future directions
We made our analysis tractable by studying a toy model. In future works, we also want to take
appropriate limits. Additionally, we want to expand to more activation functions, specifically odd
normalized Hermite polynomials and ReLUs. We also want to prove convergence rates from various
initializations to more carefully describe the effect of tight-balance critical points. We also want
to further generalize tight-balance critical points and see if we can empirically observe them when
looseining other assumptions such as the orthogonality of the teacher vectors. Additionally, we
empirically observe global convergence to the global minimum in the toy model, but we want to
prove it.

We want to explore further connections with distillation, superposition, and activation functions
choices. Specifically, we wonder if our results can suggest favorable initializations for self-distillation.
We also wonder what studying different activation functions will reveal for feature superposition.
Superposition could be especially interesting with unequally weighted features, i.e. loosening the
standard Gaussian or the unit length teacher assumptions, and correlated teacher vectors. Regard-
ing activation function choices, we wonder if tight-balance critical points are encountered when
training real models with even activation functions on real data. We also wonder if absolute value

14



activation functions can perform competitively to ReLU or GeLU activations.
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A Relation to previous works with quadratic activation function
We consider the similarity of our work to Proposition 4.1 in Martin et al. (2024). We now assume
wi, vj ∈ Rd. Recall

H2(x) =
1√
2
(x2 − 1).

By Isserlis’ Theorem,

g2(wi, vj) = E
x∼D

[H2(w
>
i x)H2(v

>
j x)] = E

a,b∼N (0,Σ)
[H2(a)H2(b)]

=
1

2
E

a,b∼N (0,Σ)
[(a2 − 1)(b2 − 1)]

=
1

2
E

a,b∼N (0,Σ)
[a2b2 − a2 − b2 + 1]

=
1

2
E

a,b∼N (0,Σ)
[a2b2]− 1

2
‖wi‖2 −

1

2
‖vj‖2 +

1

2

=
1

2
‖wi‖2‖vj‖2 + (w>

i vj)
2 − 1

2
‖wi‖2 −

1

2
‖vj‖2 +

1

2
,

where
Σ =

[
‖wi‖2 w>

i vj
w>
i vj ‖vj‖2

]
.

Clearly, if we keep the original assumption that wi, vj ∈ Sd−1, we are left with (w>
i vj)

2. On the
other hand, Martin et al. (2024) considers the squared loss, where,

E
x∼D

[(w>
i x)

2(v>j x)
2] = E

a,b∼N (0,Σ)
[a2b2] = ‖wi‖2‖vj‖2 + 2(w>

i vj)
2.

Rewriting the loss for our setting with different scaling factors,

Ln,k({wi}ni=1) = E
x∼D

[( 1

n

n∑
i=1

H2(w
>
i x)−

1

k

k∑
j=1

H2(v
>
j x)

)2]

=
1

n2

n∑
i=1

n∑
q=1

gρ(w
>
i x,w

>
q x)− 2

1

nk

n∑
i=1

k∑
j=1

gρ(w
>
i x, v

>
j x) +

1

k2

k∑
j=1

k∑
q=1

gρ(v
>
j x, v

>
q x)

=
1

n2

n∑
i=1

n∑
q=1

1

2
‖wi‖2‖wq‖2 + (w>

i wq)
2 − 1

2
‖wi‖2 −

1

2
‖wq‖2 +

1

2

− 2
1

nk

n∑
i=1

k∑
j=1

1

2
‖wi‖2‖vj‖2 + (w>

i vj)
2 − 1

2
‖wi‖2 −

1

2
‖vj‖2 +

1

2

+
1

k2

k∑
j=1

k∑
r=1

1

2
‖vj‖2‖vr‖2 + (v>j vr)

2 − 1

2
‖vj‖2 −

1

2
‖vr‖2 +

1

2
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=
1

n2

n∑
i=1

n∑
q=1

−1

2
‖wi‖2 −

1

2
‖wq‖2 +

1

2
− 2

1

nk

n∑
i=1

k∑
j=1

−1

2
‖wi‖2 −

1

2
‖vj‖2 +

1

2

+
1

k2

k∑
j=1

k∑
r=1

−1

2
‖vj‖2 −

1

2
‖vr‖2 +

1

2

+
1

2

(
1

n2

n∑
i=1

n∑
q=1

‖wi‖2‖wq‖2 + 2(w>
i wq)

2 − 2
1

nk

n∑
i=1

k∑
j=1

‖wi‖2‖vj‖2 + 2(w>
i vj)

2

+
1

k2

k∑
j=1

k∑
r=1

‖vj‖2‖vr‖2 + 2(v>j vr)
2

)
.

Observe the term with the parentheses can be rewritten in terms of an expectation of the quadratic
loss and the other terms can be simplified,

=
1

2
+ 1 + 1− 1

n

n∑
i=1

‖wi‖2 +
1

n

n∑
i=1

‖wi‖2 +
1

k

k∑
j=1

‖vj‖2 −
1

k

k∑
j=1

‖vj‖2

+
1

2
E

x∼D

[( 1

n

n∑
i=1

(w>
i x)

2 − 1

k

k∑
j=1

(v>j x)
2
)2]

=
5

2
+

1

2
E

x∼D

[( 1

n

n∑
i=1

(w>
i x)

2 − 1

k

k∑
j=1

(v>j x)
2
)2]

The derivative of our loss is the same as Martin et al. (2024) up to scaling, additive factors, and
multiplicative factors.

B Critical point analysis proofs

B.1 Derivative

We first compute the derivative of our objective with respect to wα,β,

∂Ln,k(W )

∂wα,β
=

1

2

∂

∂wα,β

n∑
i=1

n∑
q=1

(w>
i wq)

ρ − ∂

∂wα,β

n∑
i=1

k∑
j=1

(w>
i vj)

ρ

=
∑

i∈[n],i 6=α

∂

∂wα,β
(w>

αwi)
ρ +

1

2

∂

∂wα,β
(w>

αwα)
ρ −

k∑
j=1

∂

∂wα,β
(w>

α vj)
ρ

=
∑

i∈[n],i 6=α

ρwi,β(w
>
αwi)

ρ−1 + ρwα,β(w
>
αwα)

ρ−1 −
k∑

j=1

ρvj,β(w
>
α vj)

ρ−1

= ρw>
:,β(Wwα)

◦ρ−1 − ρv>:,β(V wα)
◦ρ−1.

Therefore,

∂Ln,k(W )

∂wα
= ρW>(Wwα)

◦ρ−1 − ρV >(V wα)
◦ρ−1,
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and

∂Ln,k(W )

∂W
=

∂Ln,k(W )
∂w1,1

. . .


= ρ(WW>)◦ρ−1W − ρ(WV >)◦ρ−1V.

B.2 Derivative on the sphere

We restrict the rows of the derivative to be on the sphere by projecting each row onto the tangent
space Twα(S

d−1) of the sphere

∂Ln,k(W )

∂W
=


Pw1

(
∂Ln,k(W )

∂w1

)
...

Pwn

(
∂Ln,k(W )

∂wn

)


=


(I − w1w

>
1 )

(
∂Ln,k(W )

∂w1

)
...

(I − wnw
>
n )

(
∂Ln,k(W )

∂wn

)
 .

Let diag(u) denote the matrix with the entries of the vector u as its diagonal. We consider the αth
row of the projected derivative matrix

∂Ln,k(W )

∂wα
= (I − wαw

>
α )

(
ρW>(Wwα)

◦ρ−1 − ρV >(V wα)
◦ρ−1

)
= ρW>(Wwα)

◦ρ−1 − ρwαw
>
αW

>(Wwα)
◦ρ−1

− ρV >(V wα)
◦ρ−1 + ρwαw

>
α V

>(V wα)
◦ρ−1

= ρW>(Wwα)
◦ρ−1 − ρwαw

>
αW

>(Wwα)
◦ρ−1

− ρV >(V wα)
◦ρ−1 + ρwαw

>
α V

>(V wα)
◦ρ−1

= ρW>(Wwα)
◦ρ−1 − ρwαw

>
αW

>(Wwα)
◦ρ−1

− ρV >(V wα)
◦ρ−1 + ρwαw

>
α V

>(V wα)
◦ρ−1.

Putting it all together, our spherical gradient is

∂Ln,k(W )

∂W
= ρ(WW>)◦ρ−1W − ρ

(
(WW>)◦ρ−1WW> ◦ In

)
W

− ρ(WV >)◦ρ−1V + ρ
(
(WV >)◦ρ−1VW> ◦ In

)
W

= ρ(WW>)◦ρ−1W − ρ(WV >)◦ρ−1V

−
([

ρ(WW>)◦ρ−1W − ρ(WV >)◦ρ−1V
]
W> ◦ In

)
W.

Let A = ρ(WW>)◦ρ−1W − ρ(WV >)◦ρ−1V , then

∂Ln,k(W )

∂W
= A− (AW> ◦ In)W.

I have experimentally verified that this is the correct expression for the spherical gradient.
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B.3 Maximum of sum of dot products

Lemma B.1 (Maximum of sum of dot products). Suppose v1, . . . , vk ∈ Rd are pairwise orthogonal
and unit length. Consider the optimization problem

max
w∈Sd−1

k∑
j=1

(w>vj)
ρ.

The solution is 1. When ρ = 2, span(v1, . . . , vk) ∪ Sd−1 is the set of all w that attain 1. When
ρ > 2, {v1, . . . , vk} is the set of all w that attain 1.

Proof. When ρ = 2, observe

k∑
j=1

(w>vj)
2 = (V w)>(V w) = ‖V w‖22.

Consider the orthonormal matrix V ′ ∈ Rd×d which has v1, . . . , vk as its first k rows and other unit
vectors for the last d − k rows that satisfy orthogonality. Since w ∈ span(v1, . . . , vk), the inner
product of w and any of the last d− k rows of V ′ is 0. Therefore ‖V w‖22 = ‖V ′w‖22. Observe V ′ is
a rotation matrix and recall rotation matrices preserve distances. Therefore ‖V ′w‖22 = ‖w‖22 = 1,
proving the first case.

Consider ρ > 2. Let u = V w. By the orthogonality of the teacher vectors, any u ∈ span(v1, . . . , vk)∪
Sd−1 corresponds to a unique w ∈ span(v1, . . . , vk). Therefore we can write the Lagrangian function
as

L(u) =
k∑

j=1

uρj + λ
( k∑

j=1

u2j − 1
)
.

Recall,
dL
duj

= ρuρ−1
j + 2λuj = 0

is a condition for the maximum, and thus

ρuρ−2
j = −2λ.

The left hand side is a strictly increasing function of uj for all ρ > 2, therefore there is a unique u∗j
that satisfies this equation. This implies that all non-zero coordinates of u must be equal and that
candidates for the optimal solution have the form

u∗(l) =
(
0, . . . , 0︸ ︷︷ ︸

k−l

,
1√
l
, . . . ,

1√
l︸ ︷︷ ︸

l

)
, l ∈ [k].

Evaluating the objective for all these candidate solutions, we have

k∑
j=1

u∗ρj = l1−ρ/2,

which is maximized to 1 at l = 1 for every ρ > 2, implying the optimal solution is u∗ = (1, 0, . . . , 0).
This corresponds to some vj (or −vj in the case of even ρ), proving the second case.
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B.4 Identifying critical points

Theorem B.2 (Orthogonal copy critical points). Every arrangement of student vectors that satisfies
the following conditions is a critical point:

• for each i ∈ [n], wi = vj for some vj,

• for all i ∈ [n] and j ∈ [k], w>
i vj ∈ {−1, 0, 1}.

Proof. Consider the case where ρ is odd. Then the ith row of B is

Bi =
n∑

j=1

(w>
j wi)

ρ−1wj −
k∑

j=1

(v>j wi)
ρ−1vj

= wi

n∑
j=1

w>
j wi − wi

k∑
j=1

v>j wi.

Since ‖wi‖22 = 1, the ith row of the spherical gradient simplifies to

∂Ln,k(W )

∂wi
= wi

n∑
j=1

w>
j wi − wi

k∑
j=1

v>j wi −
(
wi

n∑
j=1

w>
j wi − wi

k∑
j=1

v>j wi

)>
wiwi

= wi

n∑
j=1

w>
j wi − wi

k∑
j=1

v>j wi − wi

n∑
j=1

w>
j wi + wi

k∑
j=1

v>j wi = 0.

This completes the proof for the odd case.

Consider the case where ρ is even. Then the ith row of B is

Bi =

n∑
j=1

(w>
j wi)

ρ−1wj −
k∑

j=1

(v>j wi)
ρ−1vj

= wi

n∑
j=1

|w>
j wi| − wi

k∑
j=1

|v>j wi|.

Since ‖wi‖22 = 1, the ith row of the spherical gradient simplifies to

∂Ln,k(W )

∂wi
= wi

n∑
j=1

|w>
j wi| − wi

k∑
j=1

|v>j wi| −
(
wi

n∑
j=1

|w>
j wi| − wi

k∑
j=1

|v>j wi|
)>

wiwi

= wi

n∑
j=1

|w>
j wi| − wi

k∑
j=1

|v>j wi| − wi

n∑
j=1

|w>
j wi|+ wi

k∑
j=1

|v>j wi| = 0.

This completes the proof for the even case. This completes the entire proof.

Lemma B.3 (Euclidean gradient cannot be 0). If the teacher vectors are orthogonal, ρ is even,
ρ > 0, and n < k, there exist no configuration of student neurons such that B = 0.
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Proof. We aim to show B 6= 0. Observe a sufficient condition is that there exists a i ∈ [n] such that
the squared `2 norm of the ith row of (WW>)◦ρ−1W is not equal to the squared `2 norm of the ith
row of (WV >)◦ρ−1V .

We compute the squared `2 norm of the ith row of (WV >)◦ρ−1V ,

‖((WV >)◦ρ−1V )i‖22 = ‖
k∑

j=1

(v>j wi)
ρ−1vj‖22 =

k∑
j=1

(v>j wi)
2ρ−2.

By lemma B.1, we know this quantity is at most 1, with equality only when wi = vj for some j ∈ [k].

We compute the squared `2 norm of the ith row of (WW>)◦ρ−1W ,

‖((WW>)◦ρ−1W )i‖22 = ‖
k∑

j=1

(w>
j wi)

ρ−1wj‖22

= 2

n∑
j′>j

(w>
j wi)

ρ−1(w>
j′wi)

ρ−1w>
j′wj +

n∑
j=1

(w>
j wi)

2ρ−2

= 2

n∑
j 6=i

(w>
j wi)

ρ + 2

n∑
j′>j
j′,j 6=i

(w>
j wi)

ρ−1(w>
j′wi)

ρ−1w>
j′wj + 1 +

n∑
j 6=i

(w>
j wi)

2ρ−2.

We wish to show this quantity is at least 1, therefore showing that the norms can never be equal
and proving the original statement. It is sufficient to show

2
n∑

j′>j
j′,j 6=i

(w>
j wi)

ρ−1(w>
j′wi)

ρ−1w>
j′wj +

n∑
j 6=i

(w>
j wi)

2ρ−2 ≥ 0.

Observe

2

n∑
j′>j
j′,j 6=i

(w>
j wi)

ρ−1(w>
j′wi)

ρ−1w>
j′wj +

n∑
j 6=i

(w>
j wi)

2ρ−2 =
∥∥∥ n∑

j 6=i

(w>
j wi)

ρ−1wj

∥∥∥2
2
≥ 0.

This completes the proof.

C Dynamics proofs

C.1 Toy model split-cone initialization convergence proof

Lemma C.1. Suppose n = k = d = 2 and ρ is even and ρ > 2. If student vectors are initialized
closest to different teacher vectors (up to sign symmetries), then the student vectors will converge
to their closest teacher vectors.

Proof. We first show if the student vectors are initialized closest to different teachers, they will
remain closest to their respective teacher throughout all of training. We show this by studying the
behavior of the spherical gradient flow when a student vector is nearly perfectly in between the two
teacher vectors.
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Recall the spherical gradient on the ith student vector is

∂Ln,k(W )

∂wi
= ρW>(Wwi)

◦ρ−1 − ρV >(V wi)
◦ρ−1

− ρwiw
>
i W

>(Wwi)
◦ρ−1 + ρwiw

>
i V

>(V wi)
◦ρ−1

= ρ

(
wi +

∑
j 6=i

(w>
i wj)

ρ−1wj −
k∑

j=1

(w>
i vj)

ρ−1vj

− wiw
>
i wi − wiw

>
i

∑
j 6=i

(w>
i wj)

ρ−1wj + wiw
>
i

k∑
j=1

(w>
i vj)

ρ−1vj

)

= ρ

(∑
j 6=i

(w>
i wj)

ρ−1wj −
k∑

j=1

(w>
i vj)

ρ−1vj − wi

∑
j 6=i

(w>
i wj)

ρ + wi

k∑
j=1

(w>
i vj)

ρ

)

= ρ

(∑
j 6=i

(w>
i wj)

ρ−1(wj − (w>
i wj)wi)−

k∑
j=1

(w>
i vj)

ρ−1(vj − (w>
i vj)wi)

)
.

We can split the gradient flow update into the sum of three terms, each of which lie in the tangent
space of wi,

− ρ(w>
i wj)

ρ−1(wj − (w>
i wj)wi)︸ ︷︷ ︸

1

+ ρ(w>
i v1)

ρ−1(v1 − (w>
i v1)wi)︸ ︷︷ ︸

2

+ ρ(w>
i v2)

ρ−1(v2 − (w>
i v2)wi)︸ ︷︷ ︸

3

.

We assume w>
i vi = 2−1/2 + ε for small ε > 0 and symmetrically i ∈ [2]. Observe that the update

is only one dimensional, so as long as it is pointing in the direction of v1, we will never escape the
cone. Therefore we must only compare the magnitudes. Observe∥∥(w>

i v1)
ρ−1(v1 − (w>

i v1)wi)
∥∥
2
= (w>

i v1)
ρ−1

∥∥(v1 − (w>
i v1)wi)

∥∥
2

= (w>
i v1)

ρ−1
√

‖v1‖2 − 2(w>
i v1)

2 + (w>
i v1)

2‖w1‖

= (w>
i v1)

ρ−1
√

1− (w>
i v1)

2 = (w>
i v1)

ρ−1(w>
i v2).

We consider the case where 2−1/2 < w>
2 v2 < 2−1/2+ε and w>

2 v1 < 0, since otherwise, term 1 pushes
w1 in the direction of v1.

We must show

−(w>
1 w2)

ρ−1
√
1− (w>

1 w2)2 + (w>
1 v1)

ρ−1(w>
1 v2)− (w>

1 v2)
ρ−1(w>

1 v1) > 0.

Since w>
1 v1 = 2−1/2 + ε,

w>
1 v2 =

√
1− (2−1/2 + ε)2,

and
−2−1/2(2−1/2 + ε) + 2−1/2

√
1− (2−1/2 + ε)2 < w>

1 w2 < 0.
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Therefore,

(w>
1 w2)

ρ−1
√
1− (w>

1 w2)2 + (w>
1 v1)

ρ−1(w>
1 v2)− (w>

1 v2)
ρ−1(w>

1 v1)

> (w>
1 w2)

ρ−1 + (w>
1 v1)

ρ−1(w>
1 v2)− (w>

1 v2)
ρ−1(w>

1 v1)

>
(
− 2−1/2(2−1/2 + ε) + 2−1/2

√
1− (2−1/2 + ε)2

)ρ−1

+ (2−1/2 + ε)ρ−1
√

1− (2−1/2 + ε)2 −
√
1− (2−1/2 + ε)2

ρ−1

(2−1/2 + ε) = f(ε).

When ε = 0,
√
1− (2−1/2 + ε)2 = 2−1/2, and

f(0) =
(
− 2−1/2(2−1/2 + ε) + 2−1/2

√
1− (2−1/2 + ε)2

)ρ−1

+ (2−1/2 + ε)ρ−1
√
1− (2−1/2 + ε)2 −

√
1− (2−1/2 + ε)2

ρ−1

(2−1/2 + ε)

=
(
− 2−1/22−1/2 + 2−1/22−1/2

)ρ−1
+ (2−1/2)ρ−12−1/2 − (2−1/2)ρ−12−1/2 = 0.

Additionally, the derivative with respect to ε is

f ′(ε) =
(
− 2−1/2ε− 2−1/2 + ε

2−1/2
√

1− (2−1/2 + ε)2

)(
− 2−1/2(2−1/2 + ε) + 2−1/2

√
1− (2−1/2 + ε)2

)ρ−2

+ (ρ− 1)(2−1/2 + ε)ρ−2
√
1− (2−1/2 + ε)2 +

(2−1/2 + ε)ρ√
1− (2−1/2 + ε)2

−
√

1− (2−1/2 + ε)2
ρ−1

+ (ρ− 1)(2−1/2 + ε)
√
1− (2−1/2 + ε)2

ρ−3

(2−1/2 + ε).

When ε = 0, the derivative is equal to

f ′(0) =
(
− 2−1/2

2−1/22−1/2

)(
− 2−1/2(2−1/2) + 2−1/22−1/2

)ρ−2
+ (ρ− 1)(2−1/2)ρ−22−1/2

+
(2−1/2)ρ

2−1/2
− 1√

2

ρ−1

+ (ρ− 1)(2−1/2)
1√
2

ρ−3

2−1/2

= 2(ρ− 1)(2−1/2)ρ−1.

Observe f is continuous for −1−
√
2/2 < ε < 1−

√
2/2 Therefore, there exist a 0 < δ < 1−

√
2/2

such that for all 0 < ε < δ, f(ε) > 0. This proves throughout all of training, w>
1 v1 > w>

1 v2 and
similarly for w2. In words, if the student vectors are initialized closest to different teachers, they
will remain closest to their respective teacher throughout all of training.

The only critical point attainable following split teacher initialization is the copy global minimum.
Therefore gradient flow will converge to this critical point.

Trivially,

(2−1/2 + ε)−
√

1

2
−
√
2ε− ε2 > 0.

This completes the proof.

Lemma C.2. Suppose n ≤ k ≤ d < ∞, ρ is even, ρ > 2, and we have 1/n scaling on the student
repulsive term. If all student vectors are initialized such that w>

i vi > 2−1/2+ε for ε = (40(ρ−3.9))−1,
then the student vectors will converge to their closest teacher vectors.
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Proof. We first show if the student vectors are initialized closest to different teachers, they will
remain closest to their respective teacher throughout all of training. We show this by showing
spherical gradient flow takes a student vector towards the closest teacher if the student vector is
within a certain distance of the teacher.

WLOG we assume vi = ei.

Then the spherical gradient on the ith student vector is

∂Ln,k(W )

∂wi
= ρ

(∑
j 6=i

(w>
i wj)

ρ−1(wj − (w>
i wj)wi)−

k∑
j=1

(wi,j)
ρ−1(ej − wi,jwi)

)

= ρ

(∑
j 6=i

(w>
i wj)

ρ−1(wj − (w>
i wj)wi)− (w◦ρ−1

i − wi

k∑
j=1

wρ
i,j)

)
.

For convenience, we omit the multiplicative ρ factor and consider how much the spherical gradient
flow points in the direction of the closest teacher vector v1 − (w>

i v1)wi = ei − wi,iwi,

−∂Ln,k(W )

∂wi

>

(ei − wi,iwi)

= −
(∑

j 6=i

(w>
i wj)

ρ−1(wj − (w>
i wj)wi)− (w◦ρ−1

i − wi

k∑
j=1

wρ
i,jwi)

)>
(ei − wi,iwi)

= −
(∑

j 6=i

(w>
i wj)

ρ−1(wj − (w>
i wj)wi)− (w◦ρ−1

i − wi

k∑
j=1

wρ
i,j)

)>
(ei)

= (w◦ρ−1
i,i − wi,i

k∑
j=1

wρ
i,j)−

∑
j 6=i

(w>
i wj)

ρ−1(wj,i − (w>
i wj)wi,i).

Suppose wi,i = 2−1/2 + ε,

f(ε) = ((2−1/2 + ε)◦ρ−1 − (2−1/2 + ε)

k∑
j=1

wρ
i,j)−

∑
j 6=i

(w>
i wj)

ρ−1(wj,i − (w>
i wj)(2

−1/2 + ε))

= (2−1/2 + ε)◦ρ−1 − (2−1/2 + ε)ρ+1 − (2−1/2 + ε)

k∑
j 6=i

wρ
i,j

−
n∑

j 6=i

(w>
i wj)

ρ−1wj,i + (2−1/2 + ε)
n∑

j 6=i

(w>
i wj)

ρ.

The first three terms represent the “attractive” student to teacher force, and the last two terms
represent the “repulsive” student to student force. By lemma B.1, the attractive terms are minimized
when there exists some l ∈ [k] \ i such that wi,l =

√
1− (2−1/2 + ε)2 and all other entries of wi are

0. We write this formally as

a(ε) ≥ (2−1/2 + ε)◦ρ−1 − (2−1/2 + ε)ρ+1 − (2−1/2 + ε)
√
1− (2−1/2 + ε)2

ρ
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The repulsive terms can be lower bounded as

r(ε) ≥ −(2−1/2 + ε)
( n∑

j 6=i

(w>
i wj)

ρ−1 −
n∑

j 6=i

(w>
i wj)

ρ
)

≥ min
θ∈[0,1−(2−1/2+ε)2]

−(2−1/2 + ε)(n− 1)(θρ−1 − θρ)

= −(2−1/2 + ε)(n− 1)
(
(1− (2−1/2 + ε)2)ρ−1 − (1− (2−1/2 + ε)2)ρ

)
since wj,i ≤

√
1− (2−1/2 + ε)2 ≤ (2−1/2 + ε).

10 20 30 40

0

0.01

0.02

0.03

0.04

Figure 9: Lower bound on ε with nice properties.

We find for ε ≥ m(ρ), see figure 9, with appropriate scaling, e.g. 1/n on the repulsive force,

f(ε) =
1

n
r(ε) + a(ε) ≥ 0.

Observe it is sufficient for
ε =

1

40(ρ− 3.9)
.

This completes the proof.

26


	Introduction
	Related works
	Our model
	Contributions

	Critical point analysis
	Derivative
	Finding general critical points
	Orthogonal copy critical points
	Euclidean gradient can never be 0
	Scaled rows critical points

	Toy model critical points
	Generalizing tight-balance critical points
	Minima

	Dynamics
	Tight-balance critical point dynamics with 2 students and 2 teachers
	Toy model split-cone initialization convergence
	Squared versus correlation loss

	Broader connections
	Activation function choices

	Discussion and future directions
	Relation to previous works with quadratic activation function
	Critical point analysis proofs
	Derivative
	Derivative on the sphere
	Maximum of sum of dot products
	Identifying critical points

	Dynamics proofs
	Toy model split-cone initialization convergence proof


