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1 Abstract
Decoding neural data involves extracting information from neural signals, offering insights into

information processing, memory encoding, and the generation of thoughts and behaviors. This study
focuses on decoding neural activity using the International Brain Lab (IBL) dataset (Laboratory,
2023). The IBL’s "Brain-wide Map" project, utilizing Neuropixels probes, captures the neural
activity across diverse brain regions of dozens of mice during decision-making tasks. However,
the sparsity of neural spikes and inconsistency of mouse physiology and probe placements make a
meaningful analysis challenging.

We concentrate on a subset of the IBL dataset, specifically decoding wheel speed from neuron
spikes in the posterior complex of the thalamus—a region associated with relaying sensory and
motor signals. To address data challenges related to sparsity and inconsistency, we propose four
distinct models: Reduced Rank Model, Neural Network Model, Continuous Decoder Model and
ARD Regression Model.

2 Introduction
Decoding neural data refers to the process of extracting and interpreting meaningful information

or patterns from neural signals, which consist of measurements of electrical or biochemical signals
generated by neurons in the brain. Decoding neuron activity aims to understand these signals and
gain insights into how the brain processes information, encodes memories, and generates thoughts
and behaviors. This understanding is crucial for answering key scientific questions such as “what
information is stored in different brain regions?”, “how much of neural variability is stochastic?”, and
“how much can single neurons tell us?”

In this project, we perform a decoding task using data from the International Brain Lab (IBL), a
collaborative research initiative involving 22 neuroscience laboratories from around the world, with
the shared mission of advancing our understanding of the neural systems and circuits that underlie
behavior. IBL’s “Brain-wide Map” project provides neural activity data during a decision-making
task from nearly all major brain areas with Neuropixels probes. Despite the extensive available
data, there are significant challenges to utilizing the data. Specifically, since each lab uses a different
mouse and probes are inserted in slightly different locations in each mouse, the recordings generally
pick up different numbers of neurons. As a result, there is little correspondence and consistency
across recording sessions. Moreover, the neuron spikes across different trials and time bins tend
to be sparse, which could lead to overfitting and increased computational complexity due to high
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dimensionality.

Using a subset of the IBL dataset, we aim to decode the wheel speed of a trial from neuron
spikes in the posterior complex of the thalamus, the region of the brain that is associated with
relaying sensory and motor signals. To address the aforementioned challenges related to the data,
we propose four different models, two of which (Reduced Rank Model and Neural Network Model)
first use separate linear transformations to project the each recording into a shared latent space and
then learn a single model, while the other two (Continuous Decoder Model and ARD Regression
Model) perform regularized regression on each recording individually with an inductive bias towards
sparsity. We had expected that the Reduced Rank and Neural Network models would effectively
capture information across recording sessions and different mice, and would demonstrate superior
performance to the Continuous Decoder and ARD Regression Models. However, our results were
contrary to our expectations.

3 Data
In the IBL each of the labs gathered neural recordings from over 100 head-mounted mice

using Neuropixel arrays. The mice face a screen that provides a visual stimulus in each trial,
and are fed sweet juice through a faucet as reward when they spin the wheel in front of them
in the correct direction (Figure 1). To further explore the IBL data, visit this interactive IBL website.

Figure 1: Left: Illustration of mouse performing task. Right: Head-mounted mouse with faucet
(Laboratory, 2023).

Our data consists of I = 112 recording sessions, with each recording performed at a specific lab
with a specific mouse. Within the i-th recording, there are K(i) trials, each of which contains data
from C(i) neurons across T = 40 time bins. Each trial spans 2 seconds, implying that each time
bin represents 50 milliseconds. The number of trials across recordings ranges from 340 to 1043,
with mean and median of 538.1 and 516.5 respectively. The number of neurons across recordings
ranges from 2 to 371, with mean and median of 89.9 and 59.5 respectively. The input tensor
X ∈ NK(i)

×C(i)×T represents neuron spikes in the posterior complex of the thalamus, while the output
matrix Y ∈ RK(i)

×T
+

represents absolute wheel speed. Note that both N and R+ include 0.
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We split our data into training and test sets for each recording session by first shuffling the trials,
and then randomly assigning 80% of the trials to the training set and 20% to the test set.

4 Models
As mentioned above, the IBL data present the following challenges: (1) lack of consistency across

recording sessions, since each recording involves a different mouse and different probes, and thus
detecting a different number of neurons; (2) sparsity of neuron spikes across different trials and
time bins, potentially resulting in overfitting and increased computational complexity due to high
dimensionality.

To address these challenges, we propose the following models: Reduced Rank Model, Neural
Network Model, Continuous Decoder Model, and ARD Regression Model.

Due to sparsity in neuron spikes and large variance in wheel speeds, we applied a Gaussian filter
to the data and labels prior to implementing our models.

4.1 Reduced Rank Model
The first model we implemented is the Reduced Rank Model from Zhang et al. (2023). Traditional

neural decoding relies on the following full-rank model:

Y
(i)
k = f(B(i)⊺X(i)k + b

(i)
k )

where f represents any arbitrary decoder, and B(i) ∈ RC(i)×T is the coefficient matrix with k and i
indexing the trial and recording session respectively. C(i) represents the number of neurons and
varies for each session, while T represents the number of time bins and remains constant for each
session (Figure 2).

In practice, estimating B(i) can be challenging due to high dimensionality and sparsity of data.
To overcome these challenges, we propose the Reduced Rank Model, which imposes a low-rank
structure on the coefficients B(i) as follows:

Y
(i)
k = f((U (i)V )⊺X(i)k + b

(i)
k )

where U (i) ∈ RC(i)×R and V ∈ RR×T , with R being the reduced rank that helps prevent overfitting.
The model uses the U (i) matrix as a linear transformation specific to a recording session, and
projects all neural recordings with different numbers of neurons into a shared space of dimension
R. It then uses the V matrix to capture the temporal activation patterns across all sessions. Since
(U (i)V )⊺X(i)k is a T ×T matrix, we chose a decoder function f that reduces the matrix to a T vector
by taking the mean along the first dimension.

4.2 Neural Network Model
The second model we implemented is a Neural Network Model. Similar to the Reduced Rank

Model, it uses the U (i) matrix with rank R to capture the sparse neural activation patterns; but
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instead of the V matrix, it passes U (i)⊺X
(i)
k as an input to a fully-connected neural network with

3 hidden layers and 1000 hidden units per layer. The resulting computation graphs between the
Reduced Rank and Neural Network Models are identical, except for the parameters that are shared
across recording sessions (Figure 2).

Figure 2: RRM and NN models.

4.3 Continuous Decoder Model
We implemented Ridge regression on the continuous variable of wheel speed for each recording

session, with the following objective function:

min
W (i)

∥X(i)W (i) − Y (i)∥2 − α∥W (i)∥2

where X(i) ∈ NK(i)
×(C(i)×T ) represents neuron spike counts, W (i) ∈ RT×(C(i)×T ) is the coefficient

matrix, and Y (i) ∈ RK(i)
×T

+
represents wheel speeds. The regularization parameter α is selected for

each recording sessions by a grid search over {0.001,0.01,0.1,1,10,100,1000}.

4.4 ARD Regression Model
Given the sparsity of neuron spikes across different recordings, trials and time bins, we also

considered a Bayesian regression model with an Automatic Relevance Determination (ARD) prior
(MacKay et al., 1994). From the data set of input-target pairs {X(i), Y (i)}Ii=1 where I represents
the number of recording sessions, we have X(i) ∈ NK(i)

×C(i)×T containing neuron spike counts, and
Y (i) ∈ RK(i)

×T
+

containing wheel speeds. We assume that the targets are sampled from the model
with additive noise:

Y (i) = f(X(i);B(i))) + ϵ(i)

where B is a C(i) × T coefficient matrix and ϵ(i) ∼ N(0, σ2) is the Gaussian noise. Thus we have:

p(Y (i) ∣X(i)) = N(Y (i) ∣ f(X(i);B(i)), σ2)
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To avoid overfitting, Bayesian regression regularizes the parameters by defining an explicit prior
distribution over them, often in the form of a zero-mean Gaussian. Given the broad differences
in responsiveness across neurons and time bins, we chose to implement the Automatic Relevance
Determination (ARD) prior, which furnishes each parameter with its own hyperparameter λj :

p(B ∣ λ) = N(B ∣ 0,Λ−1)
where Λ is a positive definite diagonal matrix and diag(Λ) = λ = {λ1, . . . , λM}. ARD regression has
been shown to encourage even greater sparsity than Ridge regression by assigning a hyperparameter
for each parameter, and concentrating the probability mass at zero for those parameters that are
“irrelevant” per the evidence (Tipping, 2001). The hyperparameters λ and β = σ−2, which represent
the hierarchical prior and noise variance respectively, are both drawn from Gamma distributions,
such that:

p(λ) =
M

∏
i=1

Gamma(λ ∣ a, b),

p(β) = Gamma(β ∣ c, d)
The graphical model of ARD regression is set forth in Figure 3:

Figure 3: Graphical Model of ARD Regression.

5 Results
In comparing our models, we use test mean squared error as our performance metric, and set

as our baseline a mean predictor, which outputs the average wheel speed per time-step for a given
recording session. As shown in Figure 4, we see that the Continuous Decoder Model performed
the best in all sessions, while the Reduced Rank and ARD Regression Models struggle to beat the
baseline mean predictor.

5.1 RRM underperformance
We analyzed the role of the rank parameter for the reduced rank model (Figure 5), and saw that

the optimal rank varied across recording sessions, and the differences in performance over different
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Figure 4: Comparison of model performance in 10 recording sessions.

ranks are insignificant. This suggests that despite the sparsity of the neuron spikes in the data, the
rank parameter does not have a meaningful impact on the model’s predictive power, and the bias of
the model carries more weight than the coefficients.

Figure 5: MSE by rank in Reduced Rank Model.

5.2 Neural Network Model analysis
The Neural Network Model failed to outperform the continuous decoder, even when it overfitted

the data and when it was well-regularized. This suggests that a more complex fully-connected neural
network does not provide any more information than a simple linear regression with respect to
predicting wheel speed from neuron spikes. This illustrates just how difficult it is to decode behavior
from neural data, and that simply increasing model complexity and number of parameters will not
necessarily improve predictive power.

5.3 ARD Regression underperformance
Similar to the Reduced Rank Model, ARD regression did not perform well in predicting wheel

speed, despite ARD’s tendency to promote sparsity with its parameter-specific regularizers. An
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explanation could be that even though the neuron spikes are sparse, there may be latent variables
not captured in the data that account for the mouse behavior and observed wheel speeds. By not
imposing sparsity through reduced rank or ARD prior, the Ridge regression used by the Continuous
Decoder is able to capture the overall data and produce better predictive results.

6 Discussion
Using a subset of the IBL dataset, we attempt to decode wheel speed from neuron spikes in

the posterior complex of the thalamus. To address data challenges related to inconsistency and
sparsity, we proposed four models – Reduced Rank Model, Neural Network Model, Continuous
Decoder Model and ARD Regression Model – and found that the Continuous Decoder Model, which
is based the simple Ridge regression, performed the best.

As noted earlier, the data on neuron spikes is very sparse, with over half of the neurons spike
fewer than once every ten time bins. In addition, we chose to use only neural data from the posterior
complex of the thalamus, thereby omitting a significant portion of available neural data in our models.
Using a broader range of neural data, Azabou et al. (2023) have successfully used Transformer
models on decoding in primates. We suspect that our data might have been too limited, and our
models could potentially achieve better results with a broader set of neural data.

Our results indicate that the predictive performance of our models vary across recording sessions
and it is difficult to share information across recording sessions. A future direction could be to
explore the reasons for better performance, including dataset size in terms of number of trials or
neurons, and variance of neurons spikes and behavior.
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